#从github安装scGPS(取决于本地的配置#计算机或HPC,可能需要自定义c++编译-见#安装故障排除如下)devtools::install_github(“IMB-Computational-Genomics-Lab / scGPS”)# c++编译故障排除,手动下载安装即可#完成从githubGit克隆HTTPS://github.com/海事局-计算-基因组学-实验室/scGPS#然后检入scGPS/src,如果有任何预编译的(例如带有*. #的)。所以,# *.o)文件存在,在重新编译之前删除它们#然后以scGPS为R工作目录,手动安装和加载#使用devtools功能#安装包devtools::安装()#加载包到工作区图书馆(scGPS)
此工作流的目的是解决以下任务:
1(从day_2_cardio_cell_sample数据集加载#命名为day2)图书馆(scGPS)day2 < -day_2_cardio_cell_samplemixedpop1 < -new_scGPS_object(ExpressionMatrix =day2$dat2_counts,GeneMetadata =day2$dat2geneInfo,CellMetadata =day2$dat2_clusters)2(从day_5_cardio_cell_sample数据集加载#命名为第5天)day5 < -day_5_cardio_cell_samplemixedpop2 < -new_scGPS_object(ExpressionMatrix =day5$dat5_counts,GeneMetadata =day5$dat5geneInfo,CellMetadata =day5$dat5_clusters)
#选择一个子种群c_selectID < -1#加载基因列表(可以是用户选择的任何基因列表)基因< -training_gene_sample基因< -基因$Merged_unique#加载集群信息cluster_mixedpop1 < -colData(mixedpop1),1]cluster_mixedpop2 < -colData(mixedpop2),1]#跑步训练(这里使用nboots = 3,但建议使用nboots = 50-100)LSOLDA_dat < -bootstrap_prediction(nboots =3.,mixedpop1 =mixedpop1,mixedpop2 =mixedpop2,基因=的基因,c_selectID =c_selectID,listData =列表(),cluster_mixedpop1 =cluster_mixedpop1,cluster_mixedpop2 =cluster_mixedpop2,trainset_ratio =0.7)的名字(LSOLDA_dat)#>[1]“准确性”“ElasticNetGenes”“偏差”#> [4] "ElasticNetFit" "LDAFit" "predictor_S1"#> [7] "ElasticNetPredict" " ldpredict " "cell_results"
#总结结果LDAsum_pred_lda < -summary_prediction_lda(LSOLDA_dat =LSOLDA_dat,nPredSubpop =4)套索显示细胞的百分比#分类为单元格所属sum_pred_lasso < -summary_prediction_lasso(LSOLDA_dat =LSOLDA_dat,nPredSubpop =4)#情节总结结果plot_sum < -函数(sum_dat) {sum_dat_tf < -t(sum_dat)sum_dat_tf < -na.omit(sum_dat_tf)sum_dat_tf < -应用(sum_dat [,-ncol(sum_dat)),1,函数(x) {as.numeric(as.vector(x))})sum_dat$< -名字gsub(“ElasticNet for subpop”,“sp”, sum_dat$名)sum_dat$< -名字gsub("在目标mixedpop",“p”, sum_dat$名)sum_dat$< -名字gsub(“subpop的LDA”,“sp”, sum_dat$名)sum_dat$< -名字gsub("在目标mixedpop",“p”, sum_dat$名)colnames(sum_dat_tf) < -sum_dat$的名字箱线图(sum_dat_tf拉斯维加斯=2)}plot_sum(sum_pred_lasso)
# summary accuracy检查遗漏测试集中的模型精度summary_accuracy(对象=LSOLDA_dat)#> [1] 60.55046 67.44186 62.32558# summary模型解释的最大偏差summary_deviance(对象=LSOLDA_dat)# > allDeviance美元#>[1]“7.53”“5.19”“11.88”# ># > DeviMax美元#> dat_DE$Dfd偏差DEgenes#> 1 0 7.53 genes_cluster1#> 2 1 7.53 genes_cluster1 . #7.53 genes_cluster1 . #> 3 2#> 4个剩余DEgenes剩余DEgenes剩余DEgenes# ># > LassoGenesMax美元# >零
此工作流的目的是解决以下任务:
(如果已知集群,则跳过此步骤)
#使用CORE在表达式数据中查找集群信息day5 < -day_5_cardio_cell_samplecellname < -colnames(day5$dat5_counts)集群< -day5$dat5_clusterscellname < -data.frame(“集群”=集群,“cellBarcodes”=cellname)mixedpop2 < -new_scGPS_object(ExpressionMatrix =day5$dat5_counts,GeneMetadata =day5$dat5geneInfo,CellMetadata =cellname)CORE_cluster < -CORE_clustering(mixedpop2remove_outlier =c(0),PCA =假)#更新集群信息,用户可以…key_height < -CORE_cluster$optimalClust$KeyStats$高度optimal_res < -CORE_cluster$optimalClust$OptimalResoptimal_index =哪一个(key_height= =optimal_res)clustering_after_outlier_removal < -unname(unlist(CORE_cluster$集群[[optimal_index]]))corresponding_cells_after_outlier_removal < -CORE_cluster$cellsForClusteringoriginal_cells_before_removal < -colData(mixedpop2),2]corresponding_index < -匹配(corresponding_cells_after_outlier_removaloriginal_cells_before_removal)#检查匹配相同的(as.character(original_cells_before_removal [corresponding_index]),corresponding_cells_after_outlier_removal)#>[1]是真的#用移除异常值后的新聚类创建新对象mixedpop2_post_clustering < -mixedpop2 [, corresponding_index]colData(mixedpop2_post_clustering),1) < -clustering_after_outlier_removal
(如果已知集群,则跳过此步骤)
(SCORE旨在通过在CORE算法中引入bagging aggregation和bootstrapping来获得稳定的子种群结果)
#使用SCORE在表达式数据中查找聚类信息day5 < -day_5_cardio_cell_samplecellname < -colnames(day5$dat5_counts)集群< -day5$dat5_clusterscellname < -data.frame(“集群”=集群,“cellBarcodes”=cellname)mixedpop2 < -new_scGPS_object(ExpressionMatrix =day5$dat5_counts,GeneMetadata =day5$dat5geneInfo,CellMetadata =cellname)SCORE_test < -CORE_bagging(mixedpop2remove_outlier =c(0),PCA =假,bagging_run =20.,subsample_proportion =。8)
dev.off()#>空设备# > 1##3.2.1情节核心集群p1 < -plot_CORE(CORE_cluster$树,CORE_cluster$集群,color_branch =c(“# 208 eb7”,“# 6 ce9d3”,“# 1 c5e39”,“# 8 fca40”,“154975 #”,“# b1c8eb”))p1# > 3美元#> [1] 1 5 0 1#提取CORE识别的最优索引key_height < -CORE_cluster$optimalClust$KeyStats$高度optimal_res < -CORE_cluster$optimalClust$OptimalResoptimal_index =哪一个(key_height= =optimal_res)#绘制一个最佳聚类条plot_optimal_CORE(original_tree =CORE_cluster$树,optimal_cluster =unlist(CORE_cluster$集群[optimal_index]),改变=-2000年)#>排序和分配标签…# > 2# > 162335 na# > 3# > 162335423#>绘制彩色树状图现在....#>绘制下面的酒吧现在....3.2.2 plot SCORE聚类#绘制所有集群条plot_CORE(SCORE_test$树,list_clusters =SCORE_test$集群)#绘制一个稳定的最佳聚类条plot_optimal_CORE(original_tree =SCORE_test$树,optimal_cluster =unlist(SCORE_test$集群(SCORE_test$optimal_index]),改变=-100年)#>排序和分配标签…# > 2# > 162335 na# > 3# > 162335423#>绘制彩色树状图现在....#>绘制下面的酒吧现在....
t < -tSNE(expression.mat =分析(mixedpop2))使用前1500个基因准备PCA输入…计算PCA值…#>运行tSNE…p2 < -plot_reduced(t,color_fac =因素(colData(mixedpop2),1]),托盘=1:长度(独特的(colData(mixedpop2),1))))#>警告:不鼓励使用' reduced_dat_toPlot$Dim1 '。请改用“Dim1”。#>警告:不鼓励使用' reduced_dat_toPlot$Dim2 '。请改用“Dim2”。p2
#加载基因列表(可以是用户选择的任何基因列表)基因< -training_gene_sample<基因的基因$Merged_unique基因表也可以通过差异表达进行客观鉴定#analysis需要find_markers的集群信息。这里,我们使用#核心的结果。#colData(mixedpop2)[,1] <- unlist(SCORE_test$Cluster[SCORE_test$optimal_index])suppressMessages(图书馆(locfit))德根< -find_markers(expression_matrix =分析(mixedpop2),集群=colData(mixedpop2),1],selected_cluster =独特的(colData(mixedpop2),1)))#输出包含每个集群的数据帧。#数据帧包含所有基因,按p值排序的名字(德根)#> [1] "baseMean" "log2FoldChange" "lfcSE" "stat"#>[5]“pvalue”“padj”“id”#您可以注释标识的集群DEgeneList_1vsOthers < -德根$DE_Subpop1vsRemaining$id#用户需要检查基因输入的格式,以确保它们是#与表达矩阵中的基因名一致#以下命令将“PathwayEnrichment.xlsx”文件保存到# dir工作#使用500个顶级DE基因suppressMessages(图书馆(剂量))suppressMessages(图书馆(ReactomePA))suppressMessages(图书馆(clusterProfiler))genes500 < -as.factor(DEgeneList_1vsOthers [seq_len(500)))enrichment_test < -annotate_clusters(基因,pvalueCutoff =0.05,gene_symbol =真正的)#浓缩输出可以通过运行显示clusterProfiler::dotplot(enrichment_testshowCategory =10,字体。大小=6)
此工作流的目的是解决以下任务:
#选择一个亚群体,输入基因列表c_selectID < -1#注意确保这里输入的基因格式与此格式相同mixedpop1和mixedpop2中的基因#基因=德根$id (1:500]#运行nboots = 2次的测试引导cluster_mixedpop1 < -colData(mixedpop1),1]cluster_mixedpop2 < -colData(mixedpop2),1]LSOLDA_dat < -bootstrap_prediction(nboots =2,mixedpop1 =mixedpop1,mixedpop2 =mixedpop2,基因=的基因,c_selectID =c_selectID,listData =列表(),cluster_mixedpop1 =cluster_mixedpop1,cluster_mixedpop2 =cluster_mixedpop2)
#获取汇总矩阵的行数row_cluster < -长度(独特的(colData(mixedpop2),1)))LDA显示被分类为单元格的单元格百分比#归属LDA分类器summary_prediction_lda(LSOLDA_dat =LSOLDA_dat,nPredSubpop =row_cluster)#> V1 V2的名称#> 1 29.9465240641711 31.5508021390374 LDA的子pop 1在目标mixedpop2#> 2 53.5714285714286 75.7142857142857 LDA的subpop 2在目标mixedpop2#> 3 31.5789473684211 28.5714285714286 LDA子pop 3在目标mixedpop2#> 4 50 57.5 LDA的子pop 4在目标mixedpop2套索显示被分类为单元格的单元格的百分比#归属套索分类器summary_prediction_lasso(LSOLDA_dat =LSOLDA_dat,nPredSubpop =row_cluster)#> V1 V2的名称#> 1 17.1122994652406 63.6363636363636为目标mixedpop2的子pop1添加弹性网#> 2 100 97.1428571428571在目标mixedpop2中添加子pop2的ElasticNet#> 3 71.4285714285714 66.1654135338346在目标mixedpop2的子pop3中使用ElasticNet#> 4 77.5 87.5 ElasticNet的subpop4在目标mixedpop2模型训练过程中模型解释的最大偏差summary_deviance(对象=LSOLDA_dat)# > allDeviance美元#>[1]“39.29”“51.02”# ># > DeviMax美元#> dat_DE$Dfd偏差DEgenes#> 1 0 51.02 genes_cluster1#> 2 1 51.02 genes_cluster1#> 3 2 51.02 genes_cluster1 . ##> 4 4 51.02 genes_cluster1#> 5 5 51.02 genes_cluster1#> 6 7 51.02 genes_cluster1#> 7 8 51.02 genes_cluster1#> 8 9 51.02 genes_cluster1#> 9 11 51.02 genes_cluster1#> 10 12 51.02 genes_cluster1#> 11 14 51.02 genes_cluster1#> 12 16 51.02 genes_cluster1#> 13 20 51.02 genes_cluster1#> 14 25 51.02 genes_cluster1#> 15 28 51.02 genes_cluster1#> 16 31 51.02 genes_cluster1#> 17个剩余的DEgenes剩余的DEgenes剩余的DEgenes# ># > LassoGenesMax美元# >零# summary accuracy检查遗漏测试集中的模型精度summary_accuracy(对象=LSOLDA_dat)#> [1] 67.85714 69.19643
在这里,我们看一个示例用例,以查找一个样本内或两个样本之间的集群之间的关系
#运行预测3个集群cluster_mixedpop1 < -colData(mixedpop1),1]cluster_mixedpop2 < -colData(mixedpop2),1]#cluster_mixedpop2 <- as.numeric(as.vector(colData(mixedpop2)[,1]))c_selectID < -1#前200个基因标记区分簇1基因=德根$id (1:200]LSOLDA_dat1 < -bootstrap_prediction(nboots =2,mixedpop1 =mixedpop2,mixedpop2 =mixedpop2,基因=基因,c_selectID,listData =列表(),cluster_mixedpop1 =cluster_mixedpop2,cluster_mixedpop2 =cluster_mixedpop2)c_selectID < -2基因=德根$id (1:200]LSOLDA_dat2 < -bootstrap_prediction(nboots =2,mixedpop1 =mixedpop2,mixedpop2 =mixedpop2,基因=基因,c_selectID,listData =列表(),cluster_mixedpop1 =cluster_mixedpop2,cluster_mixedpop2 =cluster_mixedpop2)c_selectID < -3.基因=德根$id (1:200]LSOLDA_dat3 < -bootstrap_prediction(nboots =2,mixedpop1 =mixedpop2,mixedpop2 =mixedpop2,基因=基因,c_selectID,listData =列表(),cluster_mixedpop1 =cluster_mixedpop2,cluster_mixedpop2 =cluster_mixedpop2)c_selectID < -4基因=德根$id (1:200]LSOLDA_dat4 < -bootstrap_prediction(nboots =2,mixedpop1 =mixedpop2,mixedpop2 =mixedpop2,基因=基因,c_selectID,listData =列表(),cluster_mixedpop1 =cluster_mixedpop2,cluster_mixedpop2 =cluster_mixedpop2)#准备sankey图的表输入LASSO_C1S2 < -reformat_LASSO(c_selectID =1,mp_selectID =2,LSOLDA_dat =LSOLDA_dat1,nPredSubpop =长度(独特的(colData(mixedpop2)(,1))),Nodes_group =“# 7570 b3”)LASSO_C2S2 < -reformat_LASSO(c_selectID =2,mp_selectID =2,LSOLDA_dat =LSOLDA_dat2,nPredSubpop =长度(独特的(colData(mixedpop2)(,1))),Nodes_group =“# 1 b9e77”)LASSO_C3S2 < -reformat_LASSO(c_selectID =3.,mp_selectID =2,LSOLDA_dat =LSOLDA_dat3,nPredSubpop =长度(独特的(colData(mixedpop2)(,1))),Nodes_group =“# e7298a”)LASSO_C4S2 < -reformat_LASSO(c_selectID =4,mp_selectID =2,LSOLDA_dat =LSOLDA_dat4,nPredSubpop =长度(独特的(colData(mixedpop2)(,1))),Nodes_group =“# 00飞行符”)结合< -rbind(lasso_c1s2, lasso_c2s2, lasso_c3s2, lasso_c4s2)结合< -结合(is.na(结合$值)! =真正的,)nboots =2#links:源,目标,值#来源:节点,节点组combined_D3obj < -列表(节点=[(nboots相结合+3.):(nboots+4)),链接=(相结合,c((nboots+2):(nboots+1),ncol(联合))))图书馆(networkD3)Node_source < -as.vector(排序(独特的(combined_D3obj$链接$源)))Node_target < -as.vector(排序(独特的(combined_D3obj$链接$目标)))Node_all < -独特的(c(Node_source Node_target))#为Source分配id(从0开始)< -combined_D3obj来源$链接$源目标< -combined_D3obj$链接$目标为(我在1:长度(Node_all)) {来源(来源= =Node_all[我]]< -我-1目标(目标= =Node_all[我]]< -我-1}#combined_D3obj$链接$源< -as.numeric(源)combined_D3obj$链接$目标< -as.numeric(目标)combined_D3obj$链接$LinkColor < -结合$节点组#准备节点信息node_df < -data.frame(节点=Node_all)node_df$id < -as.numeric(c(0,1:(长度(Node_all)-1)))suppressMessages(图书馆(dplyr))颜色< -结合% > %数(节点,颜色=节点组)% > %选择(2)node_df$颜色< -颜色$颜色suppressMessages(图书馆(networkD3))p1 < -sankeyNetwork(链接=combined_D3obj$链接,节点=node_df,值=“价值”,节点组=“颜色”,LinkGroup =“LinkColor”,NodeID =“节点”,源=“源”,目标=“目标”,字形大小=22)p1
在这里,我们看一个示例用例,以查找一个样本内或两个样本之间的集群之间的关系
#运行预测3个集群cluster_mixedpop1 < -colData(mixedpop1),1]cluster_mixedpop2 < -colData(mixedpop2),1]row_cluster < -长度(独特的(colData(mixedpop2),1)))c_selectID < -1#前200个基因标记区分簇1基因=德根$id (1:200]LSOLDA_dat1 < -bootstrap_prediction(nboots =2,mixedpop1 =mixedpop1,mixedpop2 =mixedpop2,基因=基因,c_selectID,listData =列表(),cluster_mixedpop1 =cluster_mixedpop1,cluster_mixedpop2 =cluster_mixedpop2)c_selectID < -2基因=德根$id (1:200]LSOLDA_dat2 < -bootstrap_prediction(nboots =2,mixedpop1 =mixedpop1,mixedpop2 =mixedpop2,基因=基因,c_selectID,listData =列表(),cluster_mixedpop1 =cluster_mixedpop1,cluster_mixedpop2 =cluster_mixedpop2)c_selectID < -3.基因=德根$id (1:200]LSOLDA_dat3 < -bootstrap_prediction(nboots =2,mixedpop1 =mixedpop1,mixedpop2 =mixedpop2,基因=基因,c_selectID,listData =列表(),cluster_mixedpop1 =cluster_mixedpop1,cluster_mixedpop2 =cluster_mixedpop2)#准备sankey图的表输入LASSO_C1S1 < -reformat_LASSO(c_selectID =1,mp_selectID =1,LSOLDA_dat =LSOLDA_dat1,nPredSubpop =row_cluster,Nodes_group =“# 7570 b3”)LASSO_C2S1 < -reformat_LASSO(c_selectID =2,mp_selectID =1,LSOLDA_dat =LSOLDA_dat2,nPredSubpop =row_cluster,Nodes_group =“# 1 b9e77”)LASSO_C3S1 < -reformat_LASSO(c_selectID =3.,mp_selectID =1,LSOLDA_dat =LSOLDA_dat3,nPredSubpop =row_cluster,Nodes_group =“# e7298a”)结合< -rbind(LASSO_C2S1 LASSO_C1S1 LASSO_C3S1)nboots =2#links:源,目标,值#来源:节点,节点组combined_D3obj < -列表(节点=[(nboots相结合+3.):(nboots+4)),链接=(相结合,c((nboots+2):(nboots+1),ncol(联合))))结合< -结合(is.na(结合$值)! =真正的,)图书馆(networkD3)Node_source < -as.vector(排序(独特的(combined_D3obj$链接$源)))Node_target < -as.vector(排序(独特的(combined_D3obj$链接$目标)))Node_all < -独特的(c(Node_source Node_target))#为Source分配id(从0开始)< -combined_D3obj来源$链接$源目标< -combined_D3obj$链接$目标为(我在1:长度(Node_all)) {来源(来源= =Node_all[我]]< -我-1目标(目标= =Node_all[我]]< -我-1}combined_D3obj$链接$源< -as.numeric(源)combined_D3obj$链接$目标< -as.numeric(目标)combined_D3obj$链接$LinkColor < -结合$节点组#准备节点信息node_df < -data.frame(节点=Node_all)node_df$id < -as.numeric(c(0,1:(长度(Node_all)-1)))suppressMessages(图书馆(dplyr))n < -长度(独特的(node_df$节点)getPalette =colorRampPalette(RColorBrewer::brewer.pal(9,“set2”中的))颜色=getPalette(n)node_df$颜色< -颜色suppressMessages(图书馆(networkD3))p1 < -sankeyNetwork(链接=combined_D3obj$链接,节点=node_df,值=“价值”,节点组=“颜色”,LinkGroup =“LinkColor”,NodeID =“节点”,源=“源”,目标=“目标”,字形大小=22)p1
devtools::session_info()# >会话信息────────────────────────────────────────────────────────────────#>设置值#>版本R版本4.1.0 (2021-05-18)#> os Ubuntu 20.04.2 LTS#>系统x86_64, linux-gnu#> ui X11#>语言(EN)C .选项C#> ctype en_US。utf - 8# >tz美国/纽约#>日期2021-05-19# >包# >────────────────────────────────────────────────────────────────────#>包*版本日期库源代码[2]生物导体[2]生物导体#>猿5.5 2021-04-25 [2]CRAN (R 4.1.0)#> applot 0.0.6 2020-09-03 [2] CRAN (R 4.1.0)[2] CRAN (R 4.1.0)2020-12-09 [2] CRAN (R 4.1.0)[2]生物导体#> BiocGenerics * 0.38.0 2021-05-19 [2] Bioconductor> BiocManager 1.30.15 2021-05-11 [2] CRAN (R 4.1.0)[2]生物导体[2]生物导体[2] CRAN (R 4.1.0)#> bit64 4.0.5 2020-08-30 [2] CRAN (R 4.1.0)[2] CRAN (R 4.1.0)2020-01-20 [2] CRAN (R 4.1.0)> bslib 0.2.5.1 2021-05-18 [2] CRAN (R 4.1.0)[2] CRAN (R 4.1.0)> callr 3.7.0 2021-04-20 [2] CRAN (R 4.1.0)#>插入* 6 -88 2021-05-15 [2]CRAN (R 4.1.0)#>将军2.0.0 2020-02-06 [2]CRAN (R 4.1.0)[2] CRAN (R 4.1.0)[2] CRAN (R 4.1.0)#> clusterProfiler * 4.0.0 2021-05-19 [2] Bioconductor> codetools 0.2-18 2020-11-04 [2] CRAN (R 4.1.0)#> colorspace 2.0-1 2021-05-04 [2] CRAN (R 4.1.0)#> cowplot 1.1.1 2020-12-30 [2] CRAN (R 4.1.0)#>蜡笔1.4.1 2021-02-08 [2]CRAN (R 4.1.0)# >数据。table 1.14.0 2021-02-21 [2] CRAN (R 4.1.0)#> dbi 1.1.1 2021-01-15[2]起重机(r 4.1.0)#> DelayedArray 2021-05-19[2]生物导体#> denextend 1.15.1 2021-05-08 [2] CRAN (R 4.1.0)[2] CRAN (R 4.1.0)[2]生物导体#> devtools 2.4.1 2016-05-05 [2] CRAN (R 4.1.0)>文摘0.6.27 2020-10-24 [2]CRAN (R 4.1.0)[2]生物导体[2] Bioconductor2015-07-09 [2] CRAN (R 4.1.0)#> dplyr * 1.0.6 2021-05-05 [2] CRAN (R 4.1.0)#> dynamicTreeCut * 1.63- 2016-03-11 [2] CRAN (R 4.1.0)[2] CRAN (R 4.1.0)[2] CRAN (R 4.1.0)[2]生物导体[2] CRAN (R 4.1.0)[2] CRAN (R 4.1.0)> farver 2.1.0 2021-02-28 [2] CRAN (R 4.1.0)#> fastcluster 1.1.25 2018-06-07 [2] CRAN (R 4.1.0)[2] CRAN (R 4.1.0)[2] CRAN (R 4.1.0)> fgsea 1.18.0 2021-05-19[2]生物导体[2] CRAN (R 4.1.0)#> fs 1.5.0 2020-07-31 [2] CRAN (R 4.1.0)[2]生物导体[2]生物导体[2] CRAN (R 4.1.0)[2] Bioconductor[2] Bioconductor Bioconductor[2] Bioconductor#> ggforce 0.3.3 2021-03-05 [2] CRAN (R 4.1.0)#> ggplot2 * 3.3.3 2020-12-30 [2] CRAN (R 4.1.0)> grgraph 2.0.5 2021-02-23 [2] CRAN (R 4.1.0)> ggrepel 0.9.1 2021-01-15 [2] CRAN (R 4.1.0)> ggtree 3.0.0 2021-05-19[2]生物导体[2] CRAN (R 4.1.0)#>胶水1.4.2 2020-08-27 [2]CRAN (R 4.1.0)> GO.db 3.13.0 2021-05-19 [2] Bioconductor#> GOSemSim 2.18.0 2021-05-19[2]生物导体#> gower 0.2.2 2020-06-23 [2] CRAN (R 4.1.0)[2] Bioconductor[2]生物导体[2] CRAN (R 4.1.0)#> gridExtra 2.3 2017-09-09 [2] CRAN (R 4.1.0)[2] CRAN (R 4.1.0)[2] CRAN (R 4.1.0)> htmltools 0.5.1.1 [2] CRAN (R 4.1.0)[2] CRAN (R 4.1.0)2020-07-20 [2] CRAN (R 4.1.0)[2] CRAN (R 4.1.0)[2] CRAN (R 4.1.0)#> IRanges * 2.26.0 2021-05-19 [2] Bioconductor>迭代器1.0.13 2020-10-15 [2]CRAN (R 4.1.0)[2] CRAN (R 4.1.0)#> jsonlite 1.7.2 2020-12-09 [2] CRAN (R 4.1.0)[2]生物导体#>针织衫1.33 2021-04-24 [2]CRAN (R 4.1.0)>标签0.4.2 2020-10-20 [2]CRAN (R 4.1.0)#>格子* 0.20-44 2021-05-02 [2]CRAN (R 4.1.0)>熔岩1.6.9 [2]CRAN (R 4.1.0)[2] CRAN (R 4.1.0)[2] CRAN (R 4.1.0)#> locfit * 1.5-9.4 2020-03-25 [2] CRAN (R 4.1.0)[2] CRAN (R 4.1.0)> magrittr 2.0.1 2020-11-17 [2] CRAN (R 4.1.0)[2]起重机(r 4.1.0)[2] CRAN (R 4.1.0)#> MatrixGenerics * 1.4.0 2021-05-19 [2] Bioconductor#> matrixStats * 0.58.0 2021-01-29 [2] CRAN (R 4.1.0)[2] CRAN (R 4.1.0)> ModelMetrics 1.2.2.2 2020-03-17 [2] CRAN (R 4.1.0)#> munsell 0.5.0 2018-06-12 [2] CRAN (R 4.1.0)#>网络d3 * 0.4 2017-03-18 [2] CRAN (R 4.1.0)[2] CRAN (R 4.1.0)[2] CRAN (R 4.1.0)[2] Bioconductor[2] CRAN (R 4.1.0)[2] CRAN (R 4.1.0)2020-12-15 [2] CRAN (R 4.1.0)#> pkgconfig 2.0.3 2019-09-22 [2] CRAN (R 4.1.0)#> pkgload 1.2.1 2021-04-06 [2] CRAN (R 4.1.0)[2] CRAN (R 4.1.0)[2] CRAN (R 4.1.0)> polyclip 1.10-0 2019-03-14 [2] CRAN (R 4.1.0)#> prettyunits 1.1.1 2020-01-24 [2] CRAN (R 4.1.0)[2] CRAN (R 4.1.0)[2] CRAN (R 4.1.0)#> prodlim 2019.11.13 2019-11-17 [2] CRAN (R 4.1.0)[2] CRAN (R 4.1.0)[2] CRAN (R 4.1.0)#> purrr 0.3.4 2020-04-17 [2] CRAN (R 4.1.0)#> qvalue 2.24.0 2021-05-19 [2]#> r6 2.5.0 2020-10-28[2]起重机(r 4.1.0)#> rappdirs 0.3.3 2021-01-31 [2] CRAN (R 4.1.0)[2] CRAN (R 4.1.0)> Rcpp 1.0.6 [2] CRAN (R 4.1.0)#> RcppArmadillo 0.10.4.0.0 2021-04-13 [2] CRAN (R 4.1.0)#> RcppParallel 5.1.4 2021-05-04 [2] CRAN (R 4.1.0)> RCurl 1.98-1.3 [2] CRAN (R 4.1.0)[2]生物导体#> ReactomePA * 1.36.0 2021-05-19[2]生物导体>配方0.1.16 2021-04-16 [2]CRAN (R 4.1.0)[2] CRAN (R 4.1.0)[2] CRAN (R 4.1.0)#> rlang 0.4.11 2021-04-30 [2] CRAN#> rmarkdown 2.8 2021-05-07 [2] CRAN (R 4.1.0)[2] CRAN (R 4.1.0)#> rprojroot 2.0.2 2020-11-15 [2] CRAN (R 4.1.0)> RSQLite 2.2.7 [2] CRAN (R 4.1.0)#> Rtsne 0.15 2018-11-10 [2] CRAN (R 4.1.0)#> rvcheck 0.1.8 2020-03-01 [2] CRAN (R 4.1.0)#> S4Vectors * 0.30.0 2021-05-19 [2] Bioconductor[2] CRAN (R 4.1.0)[2] CRAN (R 4.1.0)[2] CRAN (R 4.1.0)#> scGPS * 1.6.0 2021-05-19 [1] Bioconductor[2] CRAN (R 4.1.0)[2] CRAN (R 4.1.0)[2] CRAN (R 4.1.0)#>单体细胞实验# 2021-05-19[2]生物导体[2] CRAN (R 4.1.0)[2] CRAN (R 4.1.0)>生物导体[2] CRAN (R 4.1.0)>测试3.0.2 [2]CRAN (R 4.1.0)#> tibble 3.1.2 2021-05-16 [2] CRAN (R 4.1.0)#>潮汐图1.2.0 2020-05-12 [2]CRAN (R 4.1.0)#> tidyr 1.1.3 2021-03-03 [2] CRAN (R 4.1.0)[2] CRAN (R 4.1.0)[2] CRAN (R 4.1.0)#> timeDate 3043.102 2018-02-21 [2] CRAN (R 4.1.0)> treeio 1.16.0 2021-05-19[2]生物导体[2] CRAN (R 4.1.0)[2] CRAN (R 4.1.0)> utf8 1.2.1 [2] CRAN (R 4.1.0)[2] CRAN (R 4.1.0)[2] CRAN (R 4.1.0)[2] CRAN (R 4.1.0)[2] CRAN (R 4.1.0)> xfun 0.23 2021-05-15 [2] CRAN (R 4.1.0)[2] cran (r 4.1.0)[2] CRAN (R 4.1.0)[2]生物导体#> yaml 2.2.1 2020-02-01 [2] CRAN (R 4.1.0)#> zlibbio1.38.0 2021-05-19[2]生物导体# >#> [1] /tmp/RtmpNUcyeE/Rinstfe8301d8740c0#> [2] /home/biocbuild/bbs-3.13-bioc/R/library