
Using the genefilter function to filter genes from a microarray

dataset

May 19, 2021

Introduction

The genefilter package can be used to filter (select) genes from a microarray dataset according to a variety
of different filtering mechanisms. Here, we will consider the example dataset in the sample.ExpressionSet
example from the Biobase package. This experiment has 26 samples, and there are 500 genes and 3
covariates. The covariates are named sex, type and score. The first two have two levels and the last
one is continuous.

> library("Biobase")

> library("genefilter")

> data(sample.ExpressionSet)

> varLabels(sample.ExpressionSet)

[1] "sex" "type" "score"

> table(sample.ExpressionSet$sex)

Female Male

11 15

> table(sample.ExpressionSet$type)

Case Control

15 11

One dichotomy that can be of interest for subsequent analyses is whether the filter is specific or
non-specific. Here, specific means that we are filtering with reference to sample metadata, for example,
type. For example, if we want to select genes that are differentially expressed in the two groups defined
by type, that is a specific filter. If on the other hand we want to select genes that are expressed in more
than 5 samples, that is an example of a non–specific filter.

First, let us see how to perform a non–specific filter. Suppose we want to select genes that have an
expression measure above 200 in at least 5 samples. To do that we use the function kOverA.

There are three steps that must be performed.

1. Create function(s) implementing the filtering criteria.

2. Assemble it (them) into a (combined) filtering function.

3. Apply the filtering function to the expression matrix.

1

> f1 <- kOverA(5, 200)

> ffun <- filterfun(f1)

> wh1 <- genefilter(exprs(sample.ExpressionSet), ffun)

> sum(wh1)

[1] 159

Here f1 is a function that implies our “expression measure above 200 in at least 5 samples” criterion,
the function ffun is the filtering function (which in this case consists of only one criterion), and we
apply it using genefilter. There were 159 genes that satisfied the criterion and passed the filter.

As an example for a specific filter, let us select genes that are differentially expressed in the groups
defined by type.

> f2 <- ttest(sample.ExpressionSet$type, p=0.1)

> wh2 <- genefilter(exprs(sample.ExpressionSet), filterfun(f2))

> sum(wh2)

[1] 88

Here, ttest is a function from the genefilter package which provides a suitable wrapper around
t.test from package stats. Now we see that there are 88 genes that satisfy the selection criterion.

Suppose that we want to combine the two filters. We want those genes for which at least 5 have an
expression measure over 200 and which also are differentially expressed between the groups defined by
type.

> ffun_combined <- filterfun(f1, f2)

> wh3 <- genefilter(exprs(sample.ExpressionSet), ffun_combined)

> sum(wh3)

[1] 35

Now we see that there are only 35 genes that satisfy both conditions.

Selecting genes that appear useful for prediction

The function knnCV defined below performs k–nearest neighbour classification using leave–one–out cross–
validation. At the same time it aggregates the genes that were selected. The function returns the
predicted classifications as its returned value. However, there is an additional side effect. The number
of times that each gene was used (provided it was at least one) are recorded and stored in the environment
of the aggregator Agg. These can subsequently be retrieved and used for other purposes.

> knnCV <- function(x, selectfun, cov, Agg, pselect = 0.01, scale=FALSE) {

+ nc <- ncol(x)

+ outvals <- rep(NA, nc)

+ for(i in seq_len(nc)) {

+ v1 <- x[,i]

+ expr <- x[,-i]

+ glist <- selectfun(expr, cov[-i], p=pselect)

+ expr <- expr[glist,]

+ if(scale) {

+ expr <- scale(expr)

+ v1 <- as.vector(scale(v1[glist]))

2

+ }

+ else

+ v1 <- v1[glist]

+ out <- paste("iter ",i, " num genes= ", sum(glist), sep="")

+ print(out)

+ Aggregate(row.names(expr), Agg)

+ if(length(v1) == 1)

+ outvals[i] <- knn(expr, v1, cov[-i], k=5)

+ else

+ outvals[i] <- knn(t(expr), v1, cov[-i], k=5)

+ }

+ return(outvals)

+ }

> gfun <- function(expr, cov, p=0.05) {

+ f2 <- ttest(cov, p=p)

+ ffun <- filterfun(f2)

+ which <- genefilter(expr, ffun)

+ }

>

Next we show how to use this function on the dataset geneData.

> library("class")

> ##scale the genes

> ##genescale is a slightly more flexible "scale"

> ##work on a subset -- for speed only

> geneData <- genescale(exprs(sample.ExpressionSet)[1:75,], 1)

> Agg <- new("aggregator")

> testcase <- knnCV(geneData, gfun, sample.ExpressionSet$type,

+ Agg, pselect=0.05)

> sort(sapply(aggenv(Agg), c), decreasing=TRUE)

AFFX-MurIL4_at AFFX-TrpnX-M_at AFFX-hum_alu_at

26 26 26

AFFX-YEL018w/_at 31308_at AFFX-PheX-M_at

20 15 15

31312_at AFFX-BioC-3_st AFFX-HUMRGE/M10098_M_at

3 3 1

AFFX-DapX-5_at AFFX-TrpnX-5_at AFFX-BioDn-5_at

1 1 1

AFFX-PheX-5_at

1

The environment Agg contains, for each gene, the number of times it was selected in the cross-validation.

Session Information

The version number of R and packages loaded for generating the vignette were:

� R version 4.1.0 (2021-05-18), x86_64-pc-linux-gnu

3

� Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_GB, LC_COLLATE=C,
LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8, LC_NAME=C,
LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

� Running under: Ubuntu 20.04.2 LTS

� Matrix products: default

� BLAS: /home/biocbuild/bbs-3.13-bioc/R/lib/libRblas.so

� LAPACK: /home/biocbuild/bbs-3.13-bioc/R/lib/libRlapack.so

� Base packages: base, datasets, grDevices, graphics, methods, parallel, stats, utils

� Other packages: ALL 1.33.0, Biobase 2.52.0, BiocGenerics 0.38.0, class 7.3-19, genefilter 1.74.0,
knitr 1.33

� Loaded via a namespace (and not attached): AnnotationDbi 1.54.0, BiocManager 1.30.15,
BiocStyle 2.20.0, Biostrings 2.60.0, DBI 1.1.1, GenomeInfoDb 1.28.0, GenomeInfoDbData 1.2.6,
IRanges 2.26.0, KEGGREST 1.32.0, Matrix 1.3-3, R6 2.5.0, RCurl 1.98-1.3, RSQLite 2.2.7,
Rcpp 1.0.6, S4Vectors 0.30.0, XML 3.99-0.6, XVector 0.32.0, annotate 1.70.0, bit 4.0.4,
bit64 4.0.5, bitops 1.0-7, blob 1.2.1, cachem 1.0.5, codetools 0.2-18, compiler 4.1.0, crayon 1.4.1,
digest 0.6.27, evaluate 0.14, fastmap 1.1.0, grid 4.1.0, highr 0.9, htmltools 0.5.1.1, httr 1.4.2,
lattice 0.20-44, magick 2.7.2, magrittr 2.0.1, memoise 2.0.0, png 0.1-7, rlang 0.4.11,
rmarkdown 2.8, splines 4.1.0, stats4 4.1.0, stringi 1.6.2, stringr 1.4.0, survival 3.2-11, tools 4.1.0,
vctrs 0.3.8, xfun 0.23, xtable 1.8-4, yaml 2.2.1, zlibbioc 1.38.0

4

