这个小插图旨在帮助开发人员从现在已经不存在的迁移bob电竞体育官网cgdsr
凹口包。注意cgdsr
包代码显示了比较,但它不保证工作。如果您对内容有疑问,请在GitHub存储库中创建一个问题:https://github.com/waldronlab/cBioPortalData/issues
库(cBioPortalData)
cBioPortalData
设置为了清晰起见,我们在这里展示cBioPortal函数的默认输入。
cbio <- cbiopportal (hostname = "www.cbioportal.org", protocol = "https", api. cbio <- cbiopportal (hostname = "www.cbioportal.org", protocol = "https", api。= "/api/api-docs") getStudies(cbio)
假#一个tibble:365×13假名字备注说明…¹publi²团体地位可不……³allSa…⁴readP…⁵studyId通过…⁶假<空空的> <空空的> < lgl > <空空的> < int > <空空的> < int > < lgl > <空空的> < >从而向假1促…“,TCGA…真正的“出版…0 2022 - 1 92真acc_tc…acc假2急性…“杰出…真正的“出版…0 2022 - 1 93真all_st…bll假3 Hypodi…”…真正的”“0 2022 - 1 44真all_st…骨髓假4 Adenoi…”整个……真正的“ACYC…0 2022 - 1…12真acbc_m…acbc假5 Adenoi…”圆盾…真正的“ACYC…0 2022 - 1…28真acyc_f…ACYC假6腺腺…"整个…真"ACYC…0 2022-1…25 TRUE acyc_j…ACYC假7腺腺…"WGS o…真"ACYC…0 2022-1…102 TRUE acyc_m…ACYC假8腺腺…"整个…真" acyc_m…ACYC假9腺腺…"整个…真" acyc_s…ACYC假10急性…"整个…真"PUBL…0 2022-1…73 TRUE all_st…bll假#…有355多行,3个多变量:referenceGenome , midid , FALSE # citation ,和缩写变量名¹description,²publicStudy, FALSE #³importDate, allSampleCount, readPermission, cancerTypeId
注意studyId
列对于进一步查询很重要。
头(getStudies (cbio)[[“studyId”]])
##[1]“acc_tcga”“all_stjude_2015”“all_stjude_2013”“acbc_mskcc_2015”##[5]“acyc_fmi_2014”“acyc_jhu_2016”
cgdsr
设置library(cgdsr) cgds <- cgds ("http://www.cbioportal.org/") getCancerStudies.CGDS(cgds)
cBioPortalData
(例)patientId
.sampleListId
识别组patientId
基于配置文件类型sampleLists
函数使用studyId
返回的输入sampleListId
对于示例列表标识符,可以使用sampleLists
并检查sampleListId
列。
samps <- sampleLists(cbio, "gbm_tcga_pub") samps[, c("category", "name", "sampleListId")]
## #小猫咪:15×3 # #类别名称sampl…¹# # <空空的> <空空的> < >从而向# # 1 all_cases_in_study所有样本gbm_tc…# # 2其他表达式集群古典gbm_tc…# # 3 all_cases_with_cna_data CNA数据样本gbm_tc…# # 4 all_cases_with_mutation_and_cna_data样本变异和CNA d gbm_tc…# # 5与mRNA all_cases_with_mrna_array_data样本数据(安捷伦gbm_tc…# # 6其他表达式集群间充质gbm_tc…# # 7 all_cases_with_methylation_data与甲基化数据样本gbm_tc…# # 89 all_cases_with_microrna_data含有甲基化数据的样本(mic…gbm_tc…## 10 other Expression Cluster Neural gbm_tc…## 11 other Expression Cluster prooneural gbm_tc…## 12 other sequencing, No Hypermutators gbm_tc…## 13 other sequencing, Not Treated gbm_tc…## 14 other sequencing, Treated gbm_tc…## 15 all_cases_with_mutation_data含有突变数据的样本gbm_tc…## #…,缩写变量名¹sampleListId
这是可能得到的case_ids
直接使用samplesInSampleLists
函数。该函数处理多个sampleList
标识符。
samplesInSampleLists(api = cbio, sampleListIds = c("gbm_tcga_pub_expr_classical", "gbm_tcga_pub_expr_mesenchymal"))
##长度为2的字符列表[["gbm_tcga_pub_expr_classical"]] TCGA-02-0001-01…[["gbm_tcga_pub_expr_mesenchymal"]] TCGA-02-0004-01…tcga - 12 - 0620 - 01
为了获得更多关于病人的信息,我们可以查询getSampleInfo
函数。
getSampleInfo(api = cbio, studyId = "gbm_tcga_pub", projection = "SUMMARY")
## #小猫咪:206×6 # # uniqueSampleKey uniqu…¹sampl…²sampl…³patie…⁴studyId # # <空空的> <空空的> <空空的> <空空的> <空空的> < >从而向# # 1 VENHQS0wMi0wMDAxLTAxOmdibV90Y2dhX3B1 VENHQS……Primar TCGA-0……TCGA-0 gbm_tc…# # 2 VENHQS0wMi0wMDAzLTAxOmdibV90Y2dhX3B1 VENHQS……Primar TCGA-0……TCGA-0 gbm_tc…# # 3 VENHQS0wMi0wMDA0LTAxOmdibV90Y2dhX3B1 VENHQS……Primar TCGA-0……TCGA-0 gbm_tc…# # 4 VENHQS0wMi0wMDA2LTAxOmdibV90Y2dhX3B1 VENHQS……Primar TCGA-0……TCGA-0 gbm_tc…# # 5 VENHQS0wMi0wMDA3LTAxOmdibV90Y2dhX3B1…VENHQS…Primar…## 7 VENHQS0wMi0wMDEwLTAxOmdibV90Y2dhX3B1…VENHQS…Primar…TCGA-0…TCGA-0…gbm_tc…## 8 VENHQS0wMi0wMDExLTAxOmdibV90Y2dhX3B1…VENHQS…Primar…TCGA-0…TCGA-0…gbm_tc…## 9 VENHQS0wMi0wMDE0LTAxOmdibV90Y2dhX3B1…VENHQS…Primar…TCGA-0…TCGA-0…gbm_tc…## 10 VENHQS0wMi0wMDE1LTAxOmdibV90Y2dhX3B1…VENHQS…Primar…TCGA-0…TCGA-0…gbm_tc…## #和缩写变量名¹uniquePatientKey, ## #²sampleType,³sampleId, ^ patientId
cgdsr
(例)case_id
.cancerStudy
标识符case_list_description
描述分析getCaseLists
而且getClinicalData
我们得到了第一个case_list_id
在这份报告
上述对象和该病例列表的相应临床数据(gbm_tcga_pub_all
如本例中的案例列表)。
clist1 <- getcaselist。CGDS(CGDS, cancerStudy = "gbm_tcga_pub")[1, "case_list_id"] getClinicalData。这份报告(cgd clist1)
cBioPortalData
(临床)请注意sampleListId
在使用fetchAllClinicalDataInStudyUsingPOST
内部端点。所有患者的数据都可以使用clinicalData
函数。
clinicalData (cbio“gbm_tcga_pub”)
## #小猫咪:206×24 # # patie…¹DFS_M…²DFS_S…³KARNO…⁴OS_MO…⁵OS_ST…⁶PRETR……之前⁷⁸SAMPL…⁹性# # <空空的> <空空的> <空空的> <空空的> <空空的> <空空的> <空空的> <空空的> <空空的> < >从而向# # 1 TCGA-0 4.5041…1:Recu 80.0 - 11.605…1:美妙的……是的第一联邦应急管理局…# # 2 TCGA-0…1.3150…1:Recu 100.0 - 4.7342…1:美妙的…不不1男# # 3 TCGA-0 10.323…1:Recu 80.0 - 11.342…1:美妙的…不不1男# # 4 TCGA-0 9.9287…1:Recu 80.0 - 18.345…1:美妙的…不不1联邦应急管理局…# # 5 TCGA-0 17.030…1:Recu 80.0 - 23.178…1:美妙的……是的第一联邦应急管理局…# # 6 TCGA-0…8.6794…1:Recu……80.0 10.586… 1:DECE… NO NO 1 Fema… ## 7 TCGA-0… 11.539… 1:Recu… 80.0 35.408… 1:DECE… YES NO 1 Fema… ## 8 TCGA-0… 4.7342… 1:Recu… 80.0 20.712… 1:DECE… NO NO 1 Fema… ## 9 TCGA-0… 100.0 82.553… 1:DECE… NO NO 1 Male ## 10 TCGA-0… 14.991… 1:Recu… 80.0 20.613… 1:DECE… NO NO 1 Male ## # … with 196 more rows, 14 more variables: sampleId , ACGH_DATA , ## # CANCER_TYPE , CANCER_TYPE_DETAILED , COMPLETE_DATA , ## # FRACTION_GENOME_ALTERED , MRNA_DATA , MUTATION_COUNT , ## # ONCOTREE_CODE , SAMPLE_TYPE , SEQUENCED , ## # SOMATIC_STATUS , TMB_NONSYNONYMOUS , TREATMENT_STATUS , and ## # abbreviated variable names ¹patientId, ²DFS_MONTHS, ³DFS_STATUS, ## # ⁴KARNOFSKY_PERFORMANCE_SCORE, ⁵OS_MONTHS, ⁶OS_STATUS, …
您可以使用不同的端点来获取单个样本的数据。首先,获得一个单一sampleId
与samplesInSampleLists
函数。
clist1 <- "gbm_tcga_pub_all" samplist <- samplesInSampleLists(cbio, clist1) onesample <- samplist[["gbm_tcga_pub_all"]][1] onesample
## [1] " tcga-02-0001-01 "
然后使用API端点检索数据。注意,您将运行httr:内容
在输出上提取数据。
cbio$getAllClinicalDataOfSampleInStudyUsingGET(sampleId = onesample, studyId = "gbm_tcga_pub")
##响应[https://www.cbioportal.org/api/studies/gbm_tcga_pub/samples/TCGA-02-0001-01/clinical-data] ##日期:2023-01-04 21:24 ##状态:200 ##内容类型:应用程序/json ##大小:3.31 kB
cgdsr
(临床)getClinicalData
使用case_list_id
作为输入,而不指定study_id
因为病例列表标识符对每个研究都是唯一的。我们查询临床数据gbm_tcga_pub_expr_classical
案例列表标识符,它是gbm_tcga_pub
研究。
getClinicalData。CGDS(x = CGDS, caseList = "gbm_tcga_pub_expr_classical")
cgdsr
允许您获取病例列表子集的临床数据gbm_tcga_pub_expr_classical
),cBioPortalData
提供所有206个样本的临床资料gbm_tcga_pub
使用clinicalData
函数。
cgdsr
返回一个data.frame
与sampleId
(TCGA.02.0009.01)但不是patientId
(TCGA.02.0009)cBioPortalData
返回sampleId
(tcga - 02 - 0009 - 01)patientId
(tcga - 02 - 0009)。cgdsr
提供了case_id
年代.
而且cBioPortalData
返回patientId
年代-
.您可能对其他临床数据端点感兴趣。对于列表,使用searchOps
函数。
searchOps (cbio“临床”)
[1]“getAllClinicalAttributesUsingGET”##[2]“fetchClinicalAttributesUsingPOST”##[3]“fetchclinicalattributesinstudyusingget”##[5]“getClinicalAttributeInStudyUsingGET”##[6]“getAllClinicalDataInStudyUsingGET”##[7]“fetchAllClinicalDataInStudyUsingPOST”##[8]“getAllClinicalDataOfPatientInStudyUsingGET”##[9]“getAllClinicalDataOfSampleInStudyUsingGET”
cBioPortalData
(molecularProfiles)molecularProfiles(api = cbio, studyId = "gbm_tcga_pub")
## #小猫咪:10×8 # # molecularAlterationType人数(¹名字备注说明……²showP…³patie…⁴molec…⁵studyId # # <空空的> <空空的> <空空的> <空空的> < lgl > < lgl > <空空的> < >从而向# # 1 COPY_NUMBER_ALTERATION DISCRE……贱人……Putati……真的假gbm_tc gbm_tc…# # 2 COPY_NUMBER_ALTERATION DISCRE……贱人……Putati……真的假gbm_tc gbm_tc…# # 3 MUTATION_EXTENDED加问好Mutati……真的假gbm_tc gbm_tc…# # 4甲基化CONTIN…冰毒…甲基…假假gbm_tc gbm_tc…# # 5 MRNA_EXPRESSION CONTIN…mRNA…mRNA e…假假gbm_tc…gbm_tc…# #6 MRNA_EXPRESSION Z-SCORE mRNA… 18,698… TRUE FALSE gbm_tc… gbm_tc… ## 7 MRNA_EXPRESSION Z-SCORE mRNA… Log-tr… TRUE FALSE gbm_tc… gbm_tc… ## 8 MRNA_EXPRESSION CONTIN… micr… expres… FALSE FALSE gbm_tc… gbm_tc… ## 9 MRNA_EXPRESSION Z-SCORE micr… microR… FALSE FALSE gbm_tc… gbm_tc… ## 10 MRNA_EXPRESSION Z-SCORE mRNA… mRNA a… TRUE FALSE gbm_tc… gbm_tc… ## # … with abbreviated variable names ¹datatype, ²description, ## # ³showProfileInAnalysisTab, ⁴patientLevel, ⁵molecularProfileId
注意,我们想要拉molecularProfileId
列,用于其他查询。
cgdsr
(getGeneticProfiles)getGeneticProfiles。CGDS(CGDS, cancerStudy = "gbm_tcga_pub")
cBioPortalData
(鉴定样本和基因)目前,需要进行一些转换才能直接使用molecularData
函数,如果你只有雨果符号。首先转换为Entrez基因id,然后获取感兴趣的样本列表中的所有样本。
hugoGeneSymbol
来entrezGeneId
genetab <- queryGeneTable(cbio, by = "hugoGeneSymbol", genes = c("NF1", "TP53", "ABL1"))基因表
## # A tibble: 3 × 3 ## entrezGeneId hugoGeneSymbol type ## ## 1 4763 NF1蛋白编码## 2 25 ABL1蛋白编码## 3 7157 TP53蛋白编码
entrez <- genetab[["entrezGeneId"]]]
allsamps <- samplesInSampleLists(cbio, "gbm_tcga_pub_all")
在下一节中,我们将展示如何使用基因和样本标识符来获得分子剖面数据。
cgdsr
(配置文件数据)的getProfileData
函数允许直接检索分子剖面数据,仅使用病例列表和遗传剖面标识符。
getProfileData。CGDS(x = CGDS, genes = c("NF1", "TP53", "ABL1"), geneticProfiles = "gbm_tcga_pub_mrna", caseList = "gbm_tcga_pub_all")
cBioPortalData
cBioPortalData
根据用例提供许多检索分子剖面数据的选项。请注意,molecularData
主要用于内部,而cBioPortalData
函数是下载此类数据的用户友好的方法。
molecularData
我们使用翻译后的可以
上面的标识符。
分子数据(cbio, "gbm_tcga_pub_mrna", entrezGeneIds = entrez, sampleIds = unlist(allsamps))
## $gbm_tcga_pub_mrna ## # tibble:618×8 # # uniqueSampleKey uniqu…¹之间……²molec…³sampl…⁴patie…⁵studyId值# # <空空的> <空空的> < int > <空空的> <空空的> <空空的> <空空的> <双> # # 1 VENHQS0wMi0wMDAxLTA…VENHQS…25 gbm_tc TCGA-0……TCGA-0 gbm_tc…-0.174 # # 2 VENHQS0wMi0wMDAxLTA VENHQS…4763年gbm_tc TCGA-0……TCGA-0 gbm_tc…-0.297 # # 3 VENHQS0wMi0wMDAxLTA VENHQS…7157年gbm_tc TCGA-0……TCGA-0 gbm_tc…0.621 # # 4 VENHQS0wMi0wMDAzLTA VENHQS……25 gbm_tc TCGA-0……TCGA-0 gbm_tc…-0.177 # # 5 VENHQS0wMi0wMDAzLTA VENHQS…4763年gbm_tc TCGA-0…TCGA-0 gbm_tc…-0.00107 # # 6 VENHQS0wMi0wMDAzLTA VENHQS…7157年gbm_tc TCGA-0……TCGA-0 gbm_tc…0.00644 # # 7 VENHQS0wMi0wMDA0LTA VENHQS……25 gbm_tc TCGA-0……TCGA-0 gbm_tc…-0.0878 # # 8 VENHQS0wMi0wMDA0LTA VENHQS…4763年gbm_tc TCGA-0……TCGA-0 gbm_tc…-0.236 # # 9 VENHQS0wMi0wMDA0LTA VENHQS…7157年gbm_tc TCGA-0……TCGA-0 gbm_tc…-0.305 # # 10 VENHQS0wMi0wMDA2LTA VENHQS……25 gbm_tc TCGA-0……TCGA-0 gbm_tc…-0.173 ## # ... 608多行,缩写为变量名¹uniquePatientKey,## #²entrezGeneId,³molecarprofileid, sampleId, patientId
getDataByGenes
的getDataByGenes
函数自动计算出研究中的所有样本标识符,它允许Hugo和Entrez标识符,以及genePanelId
输入。
getDataByGenes(api = cbio, studyId = "gbm_tcga_pub", genes = c("NF1", "TP53", "ABL1"), by = "hugoGeneSymbol", molecarprofileids = "gbm_tcga_pub_mrna")
## $gbm_tcga_pub_mrna ## # tibble:618×10 # # uniqueSamp…¹uniqu…²之间……³molec…⁴sampl…⁵patie…⁶studyId价值hugoG…⁷# # <空空的> <空空的> < int > <空空的> <空空的> <空空的> <空空的> <双> < >从而向# # 1 VENHQS0wMi0 VENHQS……25 gbm_tc TCGA-0……TCGA-0 gbm_tc…-0.174 ABL1 # # 2 VENHQS0wMi0 VENHQS…4763年gbm_tc TCGA-0……TCGA-0 gbm_tc…-0.297 NF1 # # 3 VENHQS0wMi0 VENHQS…7157年gbm_tc TCGA-0……TCGA-0 gbm_tc…0.621 TP53 # # 4 VENHQS0wMi0 VENHQS……25 gbm_tc TCGA-0……TCGA-0 gbm_tc…-0.177 ABL1 # # 5 VENHQS0wMi0 VENHQS…4763年gbm_tc TCGA-0……TCGA-0 gbm_tc…-0.00107 NF1 ## 6 VENHQS0wMi0… VENHQS… 7157 gbm_tc… TCGA-0… TCGA-0… gbm_tc… 0.00644 TP53 ## 7 VENHQS0wMi0… VENHQS… 25 gbm_tc… TCGA-0… TCGA-0… gbm_tc… -0.0878 ABL1 ## 8 VENHQS0wMi0… VENHQS… 4763 gbm_tc… TCGA-0… TCGA-0… gbm_tc… -0.236 NF1 ## 9 VENHQS0wMi0… VENHQS… 7157 gbm_tc… TCGA-0… TCGA-0… gbm_tc… -0.305 TP53 ## 10 VENHQS0wMi0… VENHQS… 25 gbm_tc… TCGA-0… TCGA-0… gbm_tc… -0.173 ABL1 ## # … with 608 more rows, 1 more variable: type , and abbreviated variable ## # names ¹uniqueSampleKey, ²uniquePatientKey, ³entrezGeneId, ## # ⁴molecularProfileId, ⁵sampleId, ⁶patientId, ⁷hugoGeneSymbol
cBioPortalData
:主要终端用户功能需要注意的是,希望尽可能容易地获得数据的最终用户应该使用maincBioPortalData
功能:
gbm_pub <- cBioPortalData(api = cbio, studyId = "gbm_tcga_pub", genes = c("NF1", "TP53", "ABL1"), by = "hugoGeneSymbol", molecarprofileids = "gbm_tcga_pub_mrna") assay(gbm_pub[["gbm_tcga_pub_mrna"]])[, 1:4]
tcga-02-0003-01 tcga-02-0004-01 tcga-02-0006-01 abl1 -0.1744878 -0.177096729 -0.08782114 -0.1733767 ## nf1 -0.2966920 -0.001066810 -0.23626512 -0.1691507 ## tp53 0.6213171 0.006435625 -0.30507285 0.3967758
cBioPortalData
(mutationData)类似于molecularData
,可以得到突变数据mutationData
函数或getDataByGenes
函数。
mutationData(api = cbio, molecarprofileids = "gbm_tcga_pub_mutations", entrezGeneIds = entrez, sampleIds = unlist(allsamps))
## $gbm_tcga_pub_mutations ## # tibble:57×28 # # uniqueSample…¹uniqu…²molec…³sampl…⁴patie…⁵之间……⁶studyId中心mutat…⁷# # <空空的> <空空的> <空空的> <空空的> <空空的> < int > <空空的> <空空的> < >从而向# # 1 VENHQS0wMi0wM…VENHQS gbm_tc……TCGA-0 TCGA-0…7157年gbm_tc基因组…体细胞# # 2 VENHQS0wMi0wM…VENHQS gbm_tc……TCGA-0 TCGA-0…4763年gbm_tc基因组…体细胞# # 3 VENHQS0wMi0wM VENHQS……gbm_tc…TCGA-0…TCGA-0…7157年gbm_tc基因组…体细胞# # 4 VENHQS0wMi0wM VENHQS……gbm_tc…TCGA-0…TCGA-0…7157年gbm_tc基因组…体细胞# # 5 VENHQS0wMi0wM VENHQS…gbm_tc…TCGA-0…TCGA-0…7157年gbm_tc基因组…体细胞# # 6 VENHQS0wMi0wM VENHQS……gbm_tc…TCGA-0…TCGA-0…7157年gbm_tc基因组…体细胞# # 7 VENHQS0wMi0wM VENHQS……gbm_tc…TCGA-0…TCGA-0…4763年gbm_tc基因组…体细胞# # 8 VENHQS0wMi0wM VENHQS……gbm_tc…TCGA-0…TCGA-0…7157年gbm_tc基因组…体细胞# # 9 VENHQS0wMi0wM VENHQS……gbm_tc…TCGA-0…TCGA-0…7157年gbm_tc基因组…体细胞# # 10 VENHQS0wMi0wM VENHQS……gbm_tc…TCGA-0…TCGA-0…7157年gbm_tc…基因组…体细胞 ## # ... 有47行,19个变量:validationStatus , ## # startPosition , endPosition , referenceAllele , ## # proteinChange , mutationType , functionalImpactScore , ## # fisValue , linkXvar , linkPdb , linkMsa , ## # ncbiBuild , variantType ,关键字, chr , ## # variantAllele , refseqMrnaId , proteinPosStart , ## # proteinPosEnd ,和缩写变量名¹uniqueSampleKey,…
getDataByGenes(api = cbio, studyId = "gbm_tcga_pub", genes = c("NF1", "TP53", "ABL1"), by = "hugoGeneSymbol", molecarprofileids = "gbm_tcga_pub_mutations")
## $gbm_tcga_pub_mutations ## # tibble:57×30 # # uniqueSample…¹uniqu…²molec…³sampl…⁴patie…⁵之间……⁶studyId中心mutat…⁷# # <空空的> <空空的> <空空的> <空空的> <空空的> < int > <空空的> <空空的> < >从而向# # 1 VENHQS0wMi0wM…VENHQS gbm_tc……TCGA-0 TCGA-0…7157年gbm_tc基因组…体细胞# # 2 VENHQS0wMi0wM…VENHQS gbm_tc……TCGA-0 TCGA-0…4763年gbm_tc基因组…体细胞# # 3 VENHQS0wMi0wM VENHQS……gbm_tc…TCGA-0…TCGA-0…7157年gbm_tc基因组…体细胞# # 4 VENHQS0wMi0wM VENHQS……gbm_tc…TCGA-0…TCGA-0…7157年gbm_tc基因组…体细胞# # 5 VENHQS0wMi0wM VENHQS…gbm_tc…TCGA-0…TCGA-0…7157年gbm_tc基因组…体细胞# # 6 VENHQS0wMi0wM VENHQS……gbm_tc…TCGA-0…TCGA-0…7157年gbm_tc基因组…体细胞# # 7 VENHQS0wMi0wM VENHQS……gbm_tc…TCGA-0…TCGA-0…4763年gbm_tc基因组…体细胞# # 8 VENHQS0wMi0wM VENHQS……gbm_tc…TCGA-0…TCGA-0…7157年gbm_tc基因组…体细胞# # 9 VENHQS0wMi0wM VENHQS……gbm_tc…TCGA-0…TCGA-0…7157年gbm_tc基因组…体细胞# # 10 VENHQS0wMi0wM VENHQS……gbm_tc…TCGA-0…TCGA-0…7157年gbm_tc…基因组…体细胞 ## # ... 有47行,21个变量:validationStatus , ## # startPosition , endPosition , referenceAllele , ## # proteinChange , mutationType , functionalImpactScore , ## # fisValue , linkXvar , linkPdb , linkMsa , ## # ncbiBuild , variantAllele , refseqMrnaId , proteinPosStart , ## # proteinPosEnd , hugoGeneSymbol , type , and缩写…
cgdsr
(getMutationData)getMutationData。CGDS(x = CGDS, caseList = "getMutationData", geneticProfile = "gbm_tcga_pub_mutations", genes = c("NF1", "TP53", "ABL1"))
cBioPortalData
(中央社)拷贝号变更数据可以通过getDataByGenes
功能还是由主cBioPortal
函数。
getDataByGenes(api = cbio, studyId = "gbm_tcga_pub", genes = c("NF1", "TP53", "ABL1"), by = "hugoGeneSymbol", molecarprofileids = "gbm_tcga_pub_cna_rae")
## $gbm_tcga_pub_cna_rae ## #609×10 # #暗金…¹uniqu…²之间……³molec…⁴sampl…⁵patie…⁶studyId值hugoG…⁷类型# # <空空的> <空空的> < int > <空空的> <空空的> <空空的> <空空的> < int > <空空的> < >从而向# # 1 VENHQS0w VENHQS……25 gbm_tc TCGA-0……TCGA-0 gbm_tc…1 ABL1 prot VENHQS0w…VENHQS……# # 4763 gbm_tc TCGA-0……TCGA-0 gbm_tc…0 NF1 prot VENHQS0w…VENHQS……# # 7157 gbm_tc TCGA-0……TCGA-0 gbm_tc…0 TP53 prot…# # 4 VENHQS0w…VENHQS…25 gbm_tc TCGA-0……TCGA-0 gbm_tc…0 ABL1 prot VENHQS0w…VENHQS……# # 4763 gbm_tc TCGA-0……TCGA-0 gbm_tc…0NF1 prot… ## 6 VENHQS0w… VENHQS… 7157 gbm_tc… TCGA-0… TCGA-0… gbm_tc… 0 TP53 prot… ## 7 VENHQS0w… VENHQS… 25 gbm_tc… TCGA-0… TCGA-0… gbm_tc… 0 ABL1 prot… ## 8 VENHQS0w… VENHQS… 4763 gbm_tc… TCGA-0… TCGA-0… gbm_tc… 0 NF1 prot… ## 9 VENHQS0w… VENHQS… 7157 gbm_tc… TCGA-0… TCGA-0… gbm_tc… 0 TP53 prot… ## 10 VENHQS0w… VENHQS… 25 gbm_tc… TCGA-0… TCGA-0… gbm_tc… 0 ABL1 prot… ## # … with 599 more rows, and abbreviated variable names ¹uniqueSampleKey, ## # ²uniquePatientKey, ³entrezGeneId, ⁴molecularProfileId, ⁵sampleId, ## # ⁶patientId, ⁷hugoGeneSymbol
cBioPortalData(api = cbio, studyId = "gbm_tcga_pub", genes = c("NF1", "TP53", "ABL1"), by = "hugoGeneSymbol", molecarprofileids = "gbm_tcga_pub_cna_rae")
##协调输入:##删除3个colData行名不在sampleMap“primary”中
一个MultiAssayExperiment对象,列出了一个自定义名称和相应的类。包含一个长度为1的ExperimentList类对象:## [1]gbm_tcga_pub_cna_rae: summarizeexperiment with 3 row and 203 columns## experiments() -获取ExperimentList实例## colData() -主/表型DataFrame ## sampleMap() -样本协调DataFrame ## ' $ ', '[', '[[' -提取colData列,子集,或实验## *格式()-转换为长或宽的DataFrame ## assays() -转换ExperimentList为矩阵的SimpleList ## exportClass() -保存数据到平面文件
cgdsr
(中央社)getProfileData。CGDS(x = CGDS,基因= c("NF1", "TP53", "ABL1"), geneticProfiles = "gbm_tcga_pub_cna_rae", caseList = "gbm_tcga_pub_cna")
cBioPortalData
(甲基化)与拷贝数改变类似,甲基化可以通过getDataByGenes
函数或通过' cBioPortalData '函数。
getDataByGenes(api = cbio, studyId = "gbm_tcga_pub", genes = c("NF1", "TP53", "ABL1"), by = "hugoGeneSymbol", molecarprofileids = "gbm_tcga_pub_methylation_hm27")
## #一个tibble:174×10 # #独特…¹uniqu…²之间……³molec…⁴sampl…⁵patie…⁶studyId值hugoG…⁷类型# # <空空的> <空空的> < int > <空空的> <空空的> <空空的> <空空的> <双> <空空的> < >从而向# # 1 VENHQS0 VENHQS……25 gbm_tc TCGA-0……TCGA-0 gbm_tc…0.103 ABL1 prot VENHQS0…VENHQS……# # 4763 gbm_tc TCGA-0……TCGA-0 gbm_tc…0.112 NF1 prot VENHQS0…VENHQS……# # 7157 gbm_tc TCGA-0……TCGA-0 gbm_tc…0.0735 TP53 prot…# # 4 VENHQS0…VENHQS…25 gbm_tc TCGA-0……TCGA-0 gbm_tc…0.202 ABL1 prot VENHQS0…VENHQS……# # 4763 gbm_tc TCGA-0…TCGA-0…gbm_tc…0.161 NF1 prot…## 6 VENHQS0…TCGA-0…TCGA-0…gbm_tc…0.152 TP53 prot…## 7 VENHQS0…VENHQS…25 gbm_tc…TCGA-0…TCGA-0…gbm_tc…0.179 ABL1 prot…## 8 VENHQS0…gbm_tc…0.161 NF1 prot…## 9 VENHQS0…TCGA-0…TCGA-0…gbm_tc…0.170 TP53 prot…## 10 VENHQS0…TCGA-0…TCGA-0…gbm_tc…0.176 ABL1 prot…## #…entid, entrezGeneId, molecularProfileId, sampleId, hugoGeneSymbol
cBioPortalData(api = cbio, studyId = "gbm_tcga_pub", genes = c("NF1", "TP53", "ABL1"), by = "hugoGeneSymbol", molecarprofileids = "gbm_tcga_pub_methylation_hm27")
##协调输入:##删除148个colData行名不在sampleMap 'primary'中
一个MultiAssayExperiment对象,列出了一个自定义名称和相应的类。包含一个长度为1的ExperimentList类对象:## experiments() -获取ExperimentList实例## colData() -主/表型DataFrame ## sampleMap() -样本协调DataFrame ## ' $ ', '[', '[[' -提取colData列,子集,或实验## *格式()-转换为长或宽的DataFrame ## assays() -转换ExperimentList为矩阵的SimpleList ## exportClass() -保存数据到平面文件
cgdsr
(甲基化)getProfileData。CGDS(x = CGDS,基因= c("NF1", "TP53", "ABL1"), geneticProfiles = "gbm_tcga_pub_methylation_hm27", caseList = "gbm_tcga_pub_methylation_hm27")
sessionInfo ()
## R版本4.2.2(2022-10-31)##平台:x86_64-pc-linux-gnu(64位)##运行在Ubuntu 20.04.5 LTS ## ##矩阵产品:默认## BLAS: /home/biocbuild/bbs-3.16-bioc/R/lib/libRblas。/home/biocbuild/bbs-3.16-bioc/R/lib/libRlapack。所以## ## locale: ## [1] LC_CTYPE=en_US。UTF-8 LC_NUMERIC= c# # [3] LC_TIME=en_GB LC_COLLATE= c# # [5] LC_MONETARY=en_US。utf - 8 LC_MESSAGES = en_US。UTF-8 ## [7] LC_PAPER=en_US。UTF-8 LC_NAME= c# # [9] LC_ADDRESS=C lc_phone = c# # [11] LC_MEASUREMENT=en_US。UTF-8 LC_IDENTIFICATION=C ## ##附加的基本包:## [1]stats4 stats graphics grDevices utils datasets methods ##[8]基础## ##其他附加包:[7] SummarizedExperiment_1.28.0 Biobase_2.58.0 ## [9] genome icranges_1.50 0.2 GenomeInfoDb_1.34.6 ## [11] IRanges_2.32.0 S4Vectors_0.36.1 ## [13] BiocGenerics_0.44.0 MatrixGenerics_1.10.0 ## [15] matrixstats_0.0.3.0 AnVIL_1.10.1 ## [17] dplyr_1.0.10 BiocStyle_2.26.0 ## ##通过命名空间加载(并且没有附加):[1] backports_1.4.1 BiocBaseUtils_1.0.0 ## [3] biocfilecache_1.0.0 RCircos_1.2.2 ## [5] splines_4.2.2 BiocParallel_1.32.5 ## b[7] TCGAutils_1.18.0 digest_0.6.31 ## [9] htmltools_0.5.4 magick_2.7.3 ## [11] fansi_1.0.3 magrittr_2.0.3 ## [13] memoise_2.0.1 tzdb_0.3.0 ## [15] limma_3.54.0 Biostrings_2.66.0 ## [17] readr_2.1.3 vroom_1.6.0 ## [23] rappdirs_1.1.1 colorspace_2.0-3 ## [25] crayon_1. 2.3 rvest_1.0.3 ## # [27]jsonlite_1.8.4 RaggedExperiment_1.22.0 # # [29] zoo_1.8-11 glue_1.6.2 # # [31] GenomicDataCommons_1.22.0 gtable_0.3.1 # # [33] zlibbioc_1.44.0 XVector_0.38.0 # # [35] DelayedArray_0.24.0 car_3.1-1 # # [37] abind_1.4-5 scales_1.2.1 # # [39] futile.options_1.0.1 DBI_1.1.3 # # [41] rstatix_0.7.1 miniUI_0.1.1.1 # # [43] Rcpp_1.0.9 gridtext_0.1.5 # # [45] xtable_1.8-4 progress_1.2.2 # # [47] archive_1.1.5 bit_4.0.5 # # [49] km.ci_0.5-6 DT_0.26 # # [51] htmlwidgets_1.6.0 httr_1.4.4 # # [53] ellipsis_0.3.2[61] rjsonio_1 .1.3 -1.6 labeling_0.4.2 ## [63] tidyselect_1.2.0 rlang_1.0.6 ## [65] later_1.3.0 AnnotationDbi_1.60.0 ## [67] munsell_0.5.0 tools_4.2.2 ## [69] cachem_1.0.6 cli_3.5.0 ## [71] generics_0.1.3 RSQLite_2.2.20 ## [73] broom_1.0.2 evaluate_0.19 ## [77] yaml_2.3.6 knitr_1.41 ## [79] bit64_4.0.5 survMisc_0.5.6 ## [81] purrr_1.0.0KEGGREST_1.38.0 # # [83] mime_0.12 formatR_1.13 # # [85] xml2_1.3.3 biomaRt_2.54.0 # # [87] compiler_4.2.2 filelock_1.0.2 # # [89] curl_4.3.3 png_0.1-8 # # [91] ggsignif_0.6.4 tibble_3.1.8 # # [93] bslib_0.4.2 stringi_1.7.8 # # [95] highr_0.10 futile.logger_1.4.3 # # [97] GenomicFeatures_1.50.3 lattice_0.20-45 # # [99] Matrix_1.5-3 commonmark_1.8.1 # # [101] markdown_1.4 KMsurv_0.1-5 # # [103] RTCGAToolbox_2.28.0 vctrs_0.5.1 # # [105] pillar_1.8.1 lifecycle_1.0.3 # # [107] BiocManager_1.30.19 jquerylib_0.1.4 ## [109] data.table_1.14.6 bitops_1.0-7 ## [111] httpuv_1.6.7 rtracklayer_1.58.0 ## [113] R6_2.5.1 BiocIO_1.8.0 ## [115] bookdown_0.31 promises_1.2.0.1 ## [117] gridExtra_2.3 codetools_0.2-18 ## [119] lambda.r_1.2.4 assertthat_0.2.1 ## [121] rjson_0.2.21 withr_2.5.0 ## [123] GenomicAlignments_1.34.0 Rsamtools_2.14.0 ## [125] GenomeInfoDbData_1.2.9 ggtext_0.1.2 ## [127] parallel_4.2.2 hms_1.1.2 ## [129] grid_4.2.2 tidyr_1.2.1 ## [131] rmarkdown_2.19 carData_3.0-5 ## [133] shiny_1.7.4 restfulr_0.0.15