Package 'synapsis'

December 9, 2023

Type Package

Title An R package to automate the analysis of double-strand break repair during meiosis

Version 1.8.0

Description Synapsis is a Bioconductor software package for automated (unbiased and reproducible) analysis of meiotic immunofluorescence datasets. The primary functions of the software can i) identify cells in meiotic prophase that are labelled by a synaptonemal complex axis or central element protein, ii) isolate individual synaptonemal complexes and measure their physical length, iii) quantify foci and co-localise them with synaptonemal complexes, iv) measure interference between synaptonemal complex-associated foci. The software has applications that extend to multiple species and to the analysis of other proteins that label meiotic prophase chromosomes. The software converts meiotic immunofluorescence images into R data frames that are compatible with machine learning methods. Given a set of microscopy images of meiotic spread slides, synapsis crops images around individual single cells, counts colocalising foci on strands on a per cell basis, and measures the distance between foci on any given strand.

```
biocViews Software, SingleCell

Depends R (>= 4.1)

Imports EBImage, stats, utils, graphics

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.1.1

VignetteBuilder knitr

Suggests knitr, rmarkdown, testthat (>= 3.0.0), ggplot2, tidyverse, BiocStyle

Config/testthat/edition 3

git_url https://git.bioconductor.org/packages/synapsis

git_branch RELEASE_3_18

git_last_commit_5a0e387

git_last_commit_date 2023-10-24

Repository Bioconductor 3.18
```

Date/Publication 2023-12-08

```
Author Lucy McNeill [aut, cre, cph] (<a href="https://orcid.org/0000-0003-1752-4882">https://orcid.org/0000-0003-1752-4882</a>), Wayne Crismani [rev, ctb] (<a href="https://orcid.org/0000-0003-0143-8293">https://orcid.org/0000-0003-0143-8293</a>)
```

Maintainer Lucy McNeill < luc.mcneill@gmail.com>

R topics documented:

```
Index
   23
annotate_foci_counting
 annotate_foci_counting
```

Description

Contains all plotting routines for count foci annotation

```
annotate_foci_counting(
  img_file,
  cell_count,
  img_orig,
  img_orig_foci,
  artificial_amp_factor,
  strands,
  coincident_foci,
  foci_label,
  alone_foci,
```

```
percent_px,
  foci_per_cell
)
```

Arguments

```
img_file
                 cell's file name
cell_count
                 unique cell counter
img_orig
                  original strand crop
img_orig_foci
                 cropped foci channel
artificial_amp_factor
                  amplification factor
                 black white mask of strand channel
strands
coincident_foci
                  mask of overlap between strand and foci channel
foci_label
                 black and white mask of foci channel
alone_foci
                  estimated number of foci that are NOT on a strand.
percent_px
                  percentage of foci mask that coincides with strand channel small number indi-
                 cates potentially problematic image.
foci_per_cell
                 number of foci counted per cell
```

Value

displays key steps from raw image to coincident foci count

```
annotate_foci_counting_adjusted

annotate_foci_counting_adjusted
```

Description

Contains all plotting routines for count foci annotation

```
annotate_foci_counting_adjusted(
  img_file,
  cell_count,
  img_orig,
  img_orig_foci,
  artificial_amp_factor,
  strands,
  coincident_foci,
  foci_label,
  alone_foci,
```

4 append_data_frame

```
percent_px,
  foci_per_cell
)
```

Arguments

img_file cell's file name cell_count unique cell counter img_orig original strand crop img_orig_foci cropped foci channel artificial_amp_factor amplification factor strands black white mask of strand channel coincident_foci mask of overlap between strand and foci channel foci_label black and white mask of foci channel alone_foci estimated number of foci that are NOT on a strand. percent_px percentage of foci mask that coincides with strand channel small number indicates potentially problematic image. number of foci counted per cell foci_per_cell

Value

displays key steps from raw image to coincident foci count

```
append_data_frame
append_data_frame
```

Description

applies new row to data frame

```
append_data_frame(
  WT_str,
  KO_str,
  WT_out,
  KO_out,
  img_file,
  foci_areas,
  df_cells,
  cell_count,
  stage,
  foci_per_cell,
```

auto_crop_fast 5

```
image_mat,
percent_px,
alone_foci,
discrepant_category,
C1
```

Arguments

WT_str string in filename corresponding to wildtype genotype. Defaults to ++.

KO_str string in filename corresponding to knockout genotype. Defaults to -.

WT_out string in output csv in genotype column, for knockout. Defaults to +/+.

KO_out string in output csv in genotype column, for knockout. Defaults to -/-.

img_file cell's file name

foci_areas pixel area of each foci
df_cells current data frame
cell_count unique cell counter

stage, meiosis stage of interest. Currently count_foci determines this with threshold-

ing/ object properties in the synaptonemal complex channel by previously calling the get_pachytene function. Note that if using this option, the count_foci function requires that the input directory contains a folder called "pachytene" with

the crops in it.

foci_per_cell foci count for cell

image_mat matrix with all pixel values above zero

percent_px percentage of foci mask that coincides with strand channel small number indi-

cates potentially problematic image.

alone_foci estimated number of foci that are NOT on a strand.

discrepant_category

estimated number of foci that are NOT on a strand.

C1 criteria

Value

data frame with new row

auto_crop_fast

Description

crop an image around each viable cell candidate.

6 auto_crop_fast

Usage

```
auto_crop_fast(
  img_path,
 max_cell_area = 20000,
 min_cell_area = 7000,
 mean_pix = 0.08,
  annotation = "off",
  blob_factor = 15,
 bg_blob_factor = 10,
  offset = 0.2,
  final_blob_amp = 10,
  test_amount = 0,
  brush_size_blob = 51,
  sigma_blob = 15,
  channel3_string = "DAPI",
  channel2_string = "SYCP3",
  channel1_string = "MLH3",
  file_ext = "jpeg",
  third_channel = "off",
  cell_aspect_ratio = 2,
  strand_amp = 2,
  path_out = img_path,
  resize_1 = 720,
  crowded_cells = "FALSE",
 watershed_radius = 50,
 watershed_tol = 0.2,
  cropping_factor = 1.3
)
```

Arguments

```
path containing image data to analyse
img_path,
max_cell_area,
                  Maximum pixel area of a cell candidate
min_cell_area,
                  Minimum pixel area of a cell candidate
mean_pix,
                  Mean pixel intensity of cell crop (in SYCP3 channel) for normalisation
                  Choice to output pipeline choices (recommended to knit)
annotation,
blob_factor,
                  Contrast factor to multiply original image by before smoothing/smudging
bg_blob_factor,
                  Contrast factor to multiply original image by to take background. Used prior to
                  thresholding.
offset,
                  Pixel value offset from bg_blob_factor. Used in thresholding to make blob mask.
final_blob_amp,
                  Contrast factor to multiply smoothed/smudged image. Used in thresholding to
                  make blob mask.
```

auto_crop_fast 7

test_amount, Optional number of first N images you want to run function on. For troubleshooting/testing/variable calibration purposes.

brush_size_blob,

Brush size for smudging the synaptonemal complex channel to make blobs

sigma_blob, Sigma in Gaussian brush for smudging the synaptonemal complex channel to make blobs

channel3_string

Optional. String appended to the files showing the channel illuminating cell structures. Defaults to DAPI, if third channel == "on".

channel2_string

String appended to the files showing the channel illuminating synaptonemal complexes. Defaults to SYCP3

channel1_string

String appended to the files showing the channel illuminating foci. Defaults to MLH3

file_ext file extension of your images e.g. tif jpeg or png.

third_channel Optional, defaults to "off". Set to "on" if you would also like crops of the third channel.

cell_aspect_ratio

Maximum aspect ratio of blob to be defined as a cell

strand_amp multiplication of strand channel for get_blobs function.

path_out, user specified output path. Defaults to img_path

resize_1 length for resized image

crowded_cells TRUE or FALSE, defaults to FALSE. Set to TRUE if you have many cells in a

frame that almost touch

watershed_radius

Radius (ext variable) in watershed method used in strand channel. Defaults to 1 (small)

watershed_tol Intensity tolerance for watershed method. Defaults to 0.05.

cropping_factor

size of cropping window square, as factor of characteristic blob radius. Defaults to 1. May need to increase if using watershed.

Details

This function takes all images in a directory, and crops around individual cells according to the antibody that stains synaptonemal complexes e.g. SYCP3. First, it increases the brightness and smudges the image with a Gaussian brush, and creates a mask using thresholding (get_blobs). Then it deletes cell candidates in the mask deemed too large, too small, or too long (keep_cells). Using the computeFeatures functions from EBImage to locate centre and radius, the cropping area is determined and the original image cropped. These images are saved in either a user specified directory, or a crops folder at the location of the image files.

Value

cropped synaptonemal complex and foci channels around single cells, regardless of stage

8 count_foci

Author(s)

Lucy McNeill

Examples

```
demo_path = paste0(system.file("extdata",package = "synapsis"))
auto_crop_fast(demo_path, annotation = "on", max_cell_area = 30000,
min_cell_area = 7000, file_ext = "tif",crowded_cells = TRUE)
```

count_foci

count_foci

Description

Calculates coincident foci in synaptonemal complex and foci channel, per cell

```
count_foci(
  img_path,
  stage = "none",
  offset_px = 0.2,
  offset_factor = 2,
  brush\_size = 3,
  brush\_sigma = 3,
  foci_norm = 0.01,
  annotation = "off"
  channel2_string = "SYCP3",
  channel1_string = "MLH3",
  file_ext = "jpeg",
  KO_str = "--",
  WT_str = "++"
 KO_out = "-/-"
 WT_out = "+/+",
 watershed_stop = "off",
 watershed_radius = 1,
 watershed_tol = 0.05,
  crowded_foci = TRUE,
  artificial_amp_factor = 1,
  strand_amp = 2,
 min_foci = -1,
  disc_size = 51,
 modify_problematic = "off",
  disc_size_foci = 5,
  C1 = 0.02,
  C2 = 0.46,
  C_weigh_foci_number = TRUE
)
```

count_foci 9

Arguments

img_path, path containing crops to analyse

stage, meiosis stage of interest. Currently count_foci determines this with threshold-

ing/object properties in the synaptonemal complex channel by previously calling the get_pachytene function. Note that if using this option, the count_foci function requires that the input directory contains a folder called "pachytene" with

the crops in it.

offset_px, Pixel value offset used in thresholding of synaptonemal complex channel

offset_factor,

Pixel value offset used in thresholding of foci channel

brush_size, size of brush to smooth the foci channel. Should be small to avoid erasing foci.

brush_sigma, sigma for Gaussian smooth of foci channel. Should be small to avoid erasing

foci.

foci_norm, Mean intensity to normalise all foci channels to.

annotation, Choice to output pipeline choices (recommended to knit)

channel2_string

String appended to the files showing the channel illuminating synaptonemal

complexes. Defaults to SYCP3

channel1_string

String appended to the files showing the channel illuminating foci. Defaults to

MLH3

file_ext file extension of your images e.g. tiff jpeg or png.

KO_str string in filename corresponding to knockout genotype. Defaults to -.

WT_str string in filename corresponding to wildtype genotype. Defaults to ++.

KO_out string in output csv in genotype column, for knockout. Defaults to -/-.

WT_out string in output csv in genotype column, for knockout. Defaults to +/+.

watershed_stop Stop default watershed method with "on"

watershed_radius

Radius (ext variable) in watershed method used in foci channel. Defaults to 1

(small)

watershed_tol Intensity tolerance for watershed method. Defaults to 0.05.

crowded_foci TRUE or FALSE, defaults to FALSE. Set to TRUE if you have foci > 100 or so.

artificial_amp_factor

Amplification of foci channel, for annotation only.

 ${\tt strand_amp} \qquad \qquad {\tt multiplication} \ \ {\tt of} \ \ {\tt strand} \ \ {\tt channel} \ \ {\tt to} \ \ {\tt make} \ \ {\tt make}$

min_foci minimum pixel area for a foci. Depends on your dpi etc. Defaults to 4

disc_size size of disc for local background calculation in synaptonemal complex channel

modify_problematic

option for synapsis to try and "save" images which have likely been counted incorrectly due to a number of reasons. Default settings are optimized for mouse

pachytene. Defaults to "off"

```
disc_size_foci size of disc for local background calculation in foci channel

C1 Default crispness criteria = sd(foci_area)/(mean(foci_area)+1)

C2 Alternative crisp criteria.

C_weigh_foci_number

choose crispness criteria- defaults to TRUE to use C1 (weighing with number).

Otherwise set to FALSE to use C2
```

Details

In this function, masks for the synaptonemal complex (SC) and foci channel are created from the saved crops of single/individual cells. These masks are computed using (optional) input parameters related to meiosis stage/ how well spread chromosomes are (for the former) and related to smoothing, thresholding and how "crowded" foci are for the latter. Finally, these two masks are multiplied, and the number of objects found with EBImage's computeFeatures are the colocalizing foci.

The file, cell number, foci count etc. are output as a data frame.

Value

data frame with foci count per cell

Author(s)

Lucy McNeill

Examples

Description

Creates mask for every individual cell candidate in mask

```
crop_single_object_fast(
  retained,
  OOI_final,
  counter_final,
  img_orig,
  img_orig_foci,
  img_orig_DAPI = "blank",
```

```
file_sc,
  file_foci,
  file_DAPI = "blank",
  cell_count,
 mean_pix,
  annotation,
  file_base,
  img_path,
  r_max,
  cx,
  су,
  channel3_string,
  channel2_string,
  channel1_string,
  file_ext,
  third_channel,
  path_out,
  img_orig_highres,
  resize_1,
  crowded_cells,
  cropping_factor
)
```

Arguments

retained Mask of cell candidates which meet size criteria. After smoothing/smudging and thresholding. OOI_final, Objects of interest count. Total number of cell candidates in retained. counter_final, Counter for single cell we are focussing on. Remove all other cells where counter_single not equal to counter_final. img_orig, description img_orig_foci, description img_orig_DAPI, description file_sc, filename of synaptonemal complex channel image file_foci, filename of foci channel image file_DAPI, filename of DAPI channel image cell_count, counter for successful crops around cells mean_pix, Mean pixel intensity of cell crop (in SYCP3 channel) for normalisation Choice to output pipeline choices (recommended to knit) annotation, filename base common to all three channels i.e. without -MLH3.jpeg etc. file_base, path containing image data to analyse img_path, maximum radius of blob for cropping r_max

12 get_blobs

cx centre of blob x cy centre of blob y

channel3_string

Optional. String appended to the files showing the channel illuminating cell structures. Defaults to DAPI, if third channel == "on".

channel2_string

String appended to the files showing the channel illuminating synaptonemal complexes. Defaults to SYCP3

channel1_string

String appended to the files showing the channel illuminating foci. Defaults to

MLH3

file_ext file extension of your images e.g. tif jpeg or png.

third_channel Optional, defaults to "off". Set to "on" if you would also like crops of the third

channel.

path_out, user specified output path. Defaults to img_path

img_orig_highres

the original strand image with original resolution

resize_l length of square to resize original image to.

crowded_cells TRUE or FALSE, defaults to FALSE. Set to TRUE if you have many cells in a

frame that almost touch

cropping_factor

size of cropping window square, as factor of characteristic blob radius. Defaults

to 1. May need to increase if using watershed.

Value

Crops around all candidates in both channels

get_blobs get blobs

Description

Makes mask of all objects bright enough to be classified as a cell cadidate

```
get_blobs(
  img_orig,
  blob_factor,
  bg_blob_factor,
  offset,
  final_blob_amp,
  brush_size_blob,
```

get_C1 13

```
sigma_blob,
watershed_tol,
watershed_radius,
crowded_cells,
annotation
)
```

Arguments

img_orig Original image

blob_factor, Contrast factor to multiply original image by before smoothing/smudging

bg_blob_factor,

Contrast factor to multiply original image by to take background. Used prior to

thresholding.

offset, Pixel value offset from bg_blob_factor. Used in thresholding to make blob mask.

final_blob_amp,

Contrast factor to multiply smoothed/smudged image. Used in thresholding to

make blob mask.

brush_size_blob,

Brush size for smudging the synaptonemal complex channel to make blobs

sigma_blob, Sigma in Gaussian brush for smudging the synaptonemal complex channel to

make blobs

watershed_tol Intensity tolerance for watershed method. Defaults to 0.05.

watershed_radius

Radius (ext variable) in watershed method used in strand channel. Defaults to 1

(small)

crowded_cells TRUE or FALSE, defaults to FALSE. Set to TRUE if you have many cells in a

frame that almost touch

annotation, Choice to output pipeline choices (recommended to knit) have many cells in a

frame that almost touch

Value

Mask with cell candidates

get_C1 get_C1

Description

calculates the statistic to compare to crisp_criteria, which determines whether the foci count will be reliable

```
get_C1(foci_areas, foci_per_cell, C_weigh_foci_number)
```

14 get_coincident_foci

Arguments

```
foci_areas pixel area of each foci

foci_per_cell foci count for cell

C_weigh_foci_number

choose crispness criteria- defaults to TRUE to use C1 (weighing with number).

Otherwise set to FALSE to use C2
```

Value

statistic to comapre to crisp_criteria

Description

calculates the statistic to compare to crisp_criteria, which determines whether the foci count will be reliable

```
get_coincident_foci(
 offset_px,
 offset_factor,
  brush_size,
  brush_sigma,
  annotation,
 watershed_stop,
 watershed_radius,
 watershed_tol,
  crowded_foci,
  artificial_amp_factor,
  strand_amp,
  disc_size,
  disc_size_foci,
  img_file,
  cell_count,
  img_orig,
  img_orig_foci,
  stage,
 WT_str,
 KO_str,
 WT_out,
 KO_out,
 C1_search,
  discrepant_category,
```

get_coincident_foci 15

```
C1,
C2,
df_cells,
C_weigh_foci_number
```

Arguments

 ${\tt offset_px}, \qquad {\tt Pixel \ value \ offset \ used \ in \ thresholding \ of \ synaptonemal \ complex \ channel}$

offset_factor,

Pixel value offset used in thresholding of foci channel

 $\verb|brush_size|, \qquad \textit{size of brush to smooth the foci channel}. Should be \textit{small to avoid erasing foci}.$

brush_sigma, sigma for Gaussian smooth of foci channel. Should be small to avoid erasing

foci.

annotation, Choice to output pipeline choices (recommended to knit)

watershed_stop Stop default watershed method with "on"

watershed_radius

Radius (ext variable) in watershed method used in foci channel. Defaults to 1

(small)

watershed_tol Intensity tolerance for watershed method. Defaults to 0.05.

crowded_foci TRUE or FALSE, defaults to FALSE. Set to TRUE if you have foci > 100 or so.

artificial_amp_factor

Amplification of foci channel, for annotation only.

strand_amp multiplication of strand channel to make masks

disc_size size of disc for local background calculation in synaptonemal complex channel

disc_size_foci size of disc for local background calculation in foci channel

img_file cell's file name
cell_count unique cell counter
img_orig original strand crop
img_orig_foci cropped foci channel

stage, meiosis stage of interest. Currently count foci determines this with threshold-

ing/object properties in the synaptonemal complex channel by previously calling the get_pachytene function. Note that if using this option, the count_foci function requires that the input directory contains a folder called "pachytene" with

the crops in it.

WT_str string in filename corresponding to wildtype genotype. Defaults to ++.

KO_str string in filename corresponding to knockout genotype. Defaults to -.

WT_out string in output csv in genotype column, for knockout. Defaults to +/+.

KO_out string in output csv in genotype column, for knockout. Defaults to -/-.

C1_search TRUE or FALSE whether the image is still being modified until it meets the

crispness criteria

get_foci_per_cell

```
discrepant_category
```

estimated number of foci that are NOT on a strand.

C1 Default crispness criteria = sd(foci_area)/(mean(foci_area)+1)

C2 Alternative crisp criteria.

df_cells current data frame

C_weigh_foci_number

choose crispness criteria- defaults to TRUE to use C1 (weighing with number).

Otherwise set to FALSE to use C2

Value

data frame with new row with most recent foci per cell appended

Description

creates mask for coincident foci

Usage

```
get_foci_per_cell(
   img_file,
   offset_px,
   stage,
   strands,
   watershed_stop,
   foci_label,
   annotation,
   cell_count,
   img_orig,
   img_orig_foci,
   artificial_amp_factor,
   coincident_foci
)
```

Arguments

img_file cell's file name

offset_px, Pixel value offset used in thresholding of synaptonemal complex channel

stage,

meiosis stage of interest. Currently count_foci determines this with thresholding/object properties in the synaptonemal complex channel by previosly calling the get_pachytene function. Note that if using this option, the count_foci function requires that the input directory contains a folder called "pachytene" with

the crops in it.

get_overlap_mask 17

```
strands
                 black white mask of strand channel
                 Stop default watershed method with "on"
watershed_stop
foci_label
                 black and white mask of foci channel
                 Choice to output pipeline choices (recommended to knit)
annotation,
cell_count
                 unique cell counter
img_orig
                 original strand crop
img_orig_foci
                 cropped foci channel
artificial_amp_factor
                 amplification factor
coincident_foci
                 mask of coincident foci
```

Value

number of foci per cell

get_overlap_mask
get_overlap_mask

Description

creates mask for coincident foci

Usage

```
get_overlap_mask(
    strands,
    foci_label,
    watershed_stop,
    img_orig_foci,
    watershed_radius,
    watershed_tol
)
```

Arguments

strands black white mask of strand channel

foci_label black and white mask of foci channel

watershed_stop Stop default watershed method with "on"

img_orig_foci cropped foci channel

watershed_radius

Radius (ext variable) in watershed method used in foci channel. Defaults to 1

(small)

watershed_tol Intensity tolerance for watershed method. Defaults to 0.05.

18 get_pachytene

Value

mask with coincident foci on strands

get_pachytene

get_pachytene

Description

Identifies crops in pachytene

Usage

```
get_pachytene(
  img_path,
  species_num = 20,
 offset = 0.2,
  ecc_{thresh} = 0.85,
  area_thresh = 0.06,
  annotation = "off",
  channel2_string = "SYCP3",
  channel1_string = "MLH3",
  file_ext = "jpeg",
 KO_str = "--",
 WT_str = "++"
 KO_{out} = "-/-"
 WT_out = "+/+",
 path_out = img_path,
 artificial_amp_factor = 3,
  strand_amp = 2,
 resize_l = 120
)
```

Arguments

img_path, path containing crops analyse species_num, number of chromosomes in the species offset, Pixel value offset used in therholding for the synaptonemal complex (SYCP3) channel The minimum average eccentricity of all objects in mask determined by comecc_thresh, putefeatures, for a cell to be pachytene. The minimum ratio of pixels included in mask to total, for a cell to be classified area_thresh, as pachytene. annotation, Choice to output pipeline choices (recommended to knit) channel2_string

String appended to the files showing the channel illuminating synaptonemal complexes. Defaults to SYCP3

keep_cells 19

channel1_string	
	String appended to the files showing the channel illuminating foci. Defaults to MLH3
file_ext	file extension of your images e.g. tiff jpeg or png.
KO_str	string in filename corresponding to knockout genotype. Defaults to
WT_str	string in filename corresponding to wildtype genotype. Defaults to ++.
KO_out	string in output csv in genotype column, for knockout. Defaults to -/
WT_out	string in output csv in genotype column, for knockout. Defaults to +/+.
path_out,	user specified output path. Defaults to img_path
artificial_amp_	factor
	Amplification of foci channel, for RGB output files. Deaults to 3.
strand_amp	multiplication of strand channel.
resize_l	length of resized square cell image.

Details

This function takes the crops make by auto_crop fast, and determines the number of synaptonemal complex candidates by considering the local background and using EBImage functions. In general, very bright objects which contrast highly with the background will be classified as the same object. Dim objects will likely be classified as many different objects. If the number of objects is too high compared to the species number (species_num) then the cell is determined to not be in pachytene. Note that this function has been optimized for mouse cells which can be very well spread / separated.

Value

Pairs of foci and synaptonemal channel crops for pachytene

Author(s)

Lucy McNeill

Examples

```
demo_path = paste0(system.file("extdata",package = "synapsis"))
SYCP3_stats <- get_pachytene(demo_path,ecc_thresh = 0.8, area_thresh = 0.04, annotation = "on")</pre>
```

|--|--|

Description

Deletes objects in mask which are too small, large, oblong i.e. unlikely to be a cell

20 make_foci_mask

Usage

```
keep_cells(
   candidate,
   max_cell_area,
   min_cell_area,
   cell_aspect_ratio,
   crowded_cells,
   annotation
)
```

Arguments

Value

Mask of cell candidates which meet size criteria

Description

creates foci mask for foci channel crop

```
make_foci_mask(
   offset_factor,
   bg,
   crowded_foci,
   img_orig_foci,
   brush_size,
   brush_sigma,
   disc_size_foci
)
```

make_strand_mask 21

Arguments

offset_factor Pixel value offset used in thresholding of foci channel
bg background value- currently just mean pixel value of whole image
crowded_foci TRUE or FALSE, defaults to FALSE. Set to TRUE if you have foci > 100 or so.
img_orig_foci cropped foci channel
brush_size size of brush to smooth the foci channel. Should be small to avoid erasing foci.
brush_sigma for Gaussian smooth of foci channel. Should be small to avoid erasing

disc_size_foci size of disc for local background calculation in foci channel

Value

foci mask

make_strand_mask

make_strand_mask

Description

creates strand mask for strand channel crop

Usage

```
make_strand_mask(
  offset_px,
  stage,
  img_orig,
  disc_size,
  brush_size,
  brush_sigma
)
```

Arguments

offset_px, Pixel value offset used in thresholding of synaptonemal complex channel meiosis stage of interest. Currently count_foci determines this with thresholdstage, ing/object properties in the synaptonemal complex channel by previouly calling the get_pachytene function. Note that if using this option, the count_foci function requires that the input directory contains a folder called "pachytene" with the crops in it. img_orig original strand crop disc_size size of disc for local background calculation in synaptonemal complex channel brush_size, size of brush to smooth the foci channel. Should be small to avoid erasing foci. brush_sigma, sigma for Gaussian smooth of foci channel. Should be small to avoid erasing

foci.

22 remove_XY

Value

strand mask

remove_XY

remove_XY

Description

applies new row to data frame

Usage

```
remove_XY(foci_label, foci_candidates, foci_areas)
```

Arguments

foci_label black and white mask of foci channel

 ${\tt foci_candidates}$

computeFeatures data frame of foci channel

foci_areas the areas of the foci objects

Value

mask with XY blob removed

Index

```
annotate\_foci\_counting, 2
{\tt annotate\_foci\_counting\_adjusted, 3}
append_data_frame, 4
auto_crop_fast, 5
count_foci, 8
{\tt crop\_single\_object\_fast, 10}
{\tt get\_blobs}, \textcolor{red}{12}
get_C1, 13
get_coincident_foci, 14
get_foci_per_cell, 16
get_overlap_mask, 17
get_pachytene, 18
keep_cells, 19
make\_foci\_mask, 20
{\tt make\_strand\_mask}, \textcolor{red}{21}
remove_XY, 22
```