摘要
将染色质相互作用以及注释作为跟踪层进行可视化。相互作用可以通过背靠背热图进行比较。相互作用可以绘制为热图和链接。
染色质相互作用涉及基因表达的精确定量和时空控制。高通量实验技术的发展,如HiC-seq, HiCAR-seq和InTAC-seq,用于分析染色质的高阶结构以及蛋白质与其附近和远程调控元件之间的相互作用,以揭示基因表达在全基因组中是如何被控制的。
互作数据将以基因组坐标与互作评分配对的形式保存。流行的格式是.validPairs
,.hic
,.cool
.的trackViewer
包可以用来处理这些数据,以绘制热图或交互链接。
将染色质相互作用轨迹绘制为热图。
library(trackViewer) library(InteractionSet) gi <- readRDS(system. reader)文件(“extdata”、“nij.chr6.51120000.53200000.gi。rds", package="trackViewer"))
## GInteractions对象,包含6个交互和1个元数据列:# # # # seqnames1 ranges1 seqnames2 ranges2 |得分< Rle > < IRanges > < Rle > < IRanges > | <数字> # # [1]chr6 51120000 - 51160000——chr6 51160000 - 51120000 | 45.1227 # # [2] chr6 51120000 - 51160000——chr6 51160000 - 51120000 | 35.0006 # # [3] chr6 51120000 - 51160000——chr6 51160000 - 51120000 | 44.7322 # # [4] chr6 51120000 - 51160000——chr6 51160000 - 51120000 | 29.3507 # # [5] chr6 51120000 - 51160000——chr6 51160000 - 51120000 | 38.8417 # # [6] chr6 51120000 - 51160000——chr6 51160000 - 51120000 | 31.7063 # #------- ##区域:53个范围和0元数据列## seqinfo: 1个来自未指定基因组的序列;没有seqlengths
## hicexplorer:hicConvertFormat工具可以用来转换其他格式为GInteractions ##例如:hicConvertFormat -m mESC_rep。hic——inputFormat hic——outputFormat cool -o mESC_rep. hicmcool ## hicConvertFormat -m mESC_rep。mcool::resolutions/10000——inputFormat cool——outputFormat ginteractions -o mESC_rep. mool::resolutions/10000g交互—分辨率10000 ##请注意元数据:分数用于绘图。range <- GRanges("chr6", IRanges(51120000, 53200000)) tr <- gi2track(gi) ctcf <- readRDS(system. GRanges("chr6", IRanges(51120000, 53200000))文件(“extdata”、“ctcf.sample。rds", package="trackViewer")) #viewTracks(trackList(ctcf, tr, heightDist = c(1,3)), # gr=range, autoOptimizeStyle = TRUE) ##查看背对背的交互数据。请确保数据是标准化的。gi2 <- gi set.seed(123) gi2$score <- gi$score + rnorm(length(gi), sd = sd(gi$score)) back2back <- gi2track(gi, gi2) ##改变颜色setTrackStyleParam(back2back, "breaks", c(seq(from=0, to=50, by=10), 200)) setTrackStyleParam(back2back, "color", c("浅蓝色","黄色","红色"))##改变y轴的lim(默认,[0,1])setTrackStyleParam(back2back, "ylim", c(0, .5)) viewTracks(trackList(ctcf, back2back, heightDist=c(1,5)), gr=range, autoOptimizeStyle = TRUE)
绘制染色质相互作用轨迹作为链接。
setTrackStyleParam(tr, "tracktype", "link") setTrackStyleParam(tr, "breaks", c(seq(from=0, to=50, by=10), 200)) setTrackStyleParam(tr, "color", c("浅蓝色","黄色","红色"))##筛选链接模拟真实数据保持<-距离(tr$dat, tr$dat2) > 5e5 & tr$dat$score>20 tr$dat <- tr$dat[keep] tr$dat2 <- tr$dat2[keep] viewTracks(trackList(tr), gr=range, autoOptimizeStyle = TRUE)
导入交互数据。Hic”(参考hic-straw和文档).这个函数importGInteractions
(trackViewer版本>=1.27.6)可以用来导入数据.hic
格式文件。
Hic <- system。文件(“extdata”、“test_chr22。hic", package =" trackViewer", mustWork=TRUE) if(.Platform$OS.type!="windows"){importGInteractions(file=hic, format="hic", ranges=GRanges("22", IRanges(50000000, 100000000)), out =" GInteractions")}
与70年# # GInteractions对象交互和1元数据列:# # seqnames1 ranges1 seqnames2 ranges2 |得分# # < Rle > < IRanges > < Rle > < IRanges > | <数字> # # 22 [1]50000001 - 50100000 - 22 50100000 - 50000001 | 26 # # 22 [2]50000001 - 50100000 - 22 50100000 - 50000001 | 2 # # [3]22 50100001 - 50200000 - 22 50200000 - 50100001 | 22 # # [4]22 50100001 - 50200000 - 22 50200000 - 50100001 | 7 # # 22 [5]50200001 - 50300000 - 22 50300000 - 50200001 | 31 ## ... ... ... ... ... ... . ...# #[66] 22号50400001 - 50500000 - 22 50500000 - 50400001 | 1 # #[67]22号50500001 - 50600000 - 22 50600000 - 50500001 | 2 # #[68]22 50800001 - 50900000 - 22 50900000 - 50800001 | 2 # #[69]22 51100001 - 51200000 - 22 51200000 - 51100001 | 3 # #[70]22号51200001 - 51300000 - 22 51300000 - 51200001 | 5 ## ------- ## 区域:13 # # seqinfo范围和0元数据列:1从一个未指明的基因组序列;没有seqlengths
另一种广泛使用的基因组相互作用数据格式是.cool
文件和凉爽指数包含从许多不同来源分析的hg19和mm9的HiC数据。这些文件可以用作可视化和注释的数据资源(参见ChIPpeakAnno: findEnhancers).的importGInteractions
函数也可用于从.cool
格式(trackViewer版本>=1.27.6)。
冷却<-系统。文件(“extdata”、“测试。mcool", package =" trackViewer", mustWork=TRUE) importGInteractions(file=cool, format="cool",分辨率= 2,ranges=GRanges("chr1", IRanges(10,28)), out =" GInteractions")
与大多数可用工具不同,plotGInteractions尝试用2D结构绘制数据。节点表示相互作用的区域,边表示相互作用的区域。节点的大小与区域的宽度相关。这些特征可能是增强子、启动子或基因。增强子和启动子显示为符号11和13的点。
库(TxDb.Hsapiens.UCSC.hg19.knownGene)库(InteractionSet) gi <- readRDS(系统。文件(“extdata”、“gi。rds", package="trackViewer"))范围<- GRanges("chr2", IRanges(234500000, 235000000))特征。gr <- suppressMessages(genes(TxDb.Hsapiens.UCSC.hg19.knownGene))特征。gr <- subsetByOverlaps(特征。Gr, regions(gi))特征。gr$col <- sample(1:7, length(feature.gr), replace=TRUE)gr$type <- sample(c(“启动子”,“增强子”,“基因”),length(feature.gr), replace=TRUE, prob=c(0.1, 0.2, 0.7)) plotGInteractions(gi, range, feature.gr)
sessionInfo ()
R开发中(不稳定)(2022-12-10 r83428)平台:x86_64-pc-linux-gnu(64位)运行在Ubuntu 22.04.1 LTS下
矩阵产品:默认BLAS: /home/biocbuild/bbs-3.17-bioc/R/lib/libRblas。所以LAPACK: /usr/lib/x86_64-linux-gnu/ LAPACK /liblapack.so.3.10.0
locale: [1] LC_CTYPE=en_US。utf - 8 LC_NUMERIC = C
[3] LC_TIME=en_GB LC_COLLATE=C
[5] LC_MONETARY = en_US。utf - 8LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER = en_US。utf - 8 LC_NAME = C
[9] lc_address = c lc_phone = c
[11] LC_MEASUREMENT = en_US。utf - 8 LC_IDENTIFICATION = C
时区:美国/纽约tzcode源代码:system (glibc)
附加的基本包:[1]grid stats4 stats graphics grDevices utils datasets[8]方法基础
其他附加包:[1]InteractionSet_1.27.0
[2] motifStack_1.43.0
[3] httr_1.4.4
[4] VariantAnnotation_1.45.0
[5] Rsamtools_2.15.0
[6] Biostrings_2.67.0
[7] XVector_0.39.0
[8] SummarizedExperiment_1.29.1
[9] MatrixGenerics_1.11.0
[10] matrixStats_0.63.0
[11] org.Hs.eg.db_3.16.0
[13]基因组特征_1.51.4
[14] AnnotationDbi_1.61.0
[15] Biobase_2.59.0
[16] Gviz_1.43.0
[17] rtracklayer_1.59.0
[18] trackViewer_1.35.2
[19] Rcpp_1.0.9
[20] GenomicRanges_1.51.4
[21] GenomeInfoDb_1.35.8
[22] IRanges_2.33.0
[23] S4Vectors_0.37.3
[24] BiocGenerics_0.45.0
通过命名空间加载(且未附加):[1]splines_4.3.0 BiocIO_1.9.1
[3] bitops_1.0-7 filelock_1.0.2
[5] R.oo_1.25.0 tibble_3.1.8 .
[7] graph_1.77.1 XML_3.99-0.13
[9] rpart_4.1.19 dirichlet多omial_1.41.0 [11] lifecycle_1.0.3 lattice_0.20-45
[13] ensembldb_2.23.1 MASS_7.3-58.1
[15] backports_1.4.1 magrittr_2.0.3
[17] Hmisc_4.7-2 sass_0.4.4
[19] rmarkdown_2.19 querylib_0.1.4
[21] yaml_2.3.6 plotrix_3.8-2
[23] grImport2_0.2-0 DBI_1.1.3
[25] CNEr_1.35.0 RColorBrewer_1.1-3
[27] ade4_1.7-20 zlibbioc_1.45.0
[29] r . utis_2.12.2 AnnotationFilter_1.23.0
[31] biovizBase_1.47.0 RCurl_1.98-1.9
[33] nnet_7.3-18 pracma_2.4.2 .
[35] rappdirs_0.3.3 GenomeInfoDbData_1.2.9
[37] grImport_0.9-5 seqLogo_1.65.0
[39] BiocStyle_2.27.0 annotate_1.77.0 .
[41] codetools_0.2-18 DelayedArray_0.25.0
[43] xml2_1.3.3 tidyselect_1.2.0
[45] BiocFileCache_2.7.1 base64enc_0.1-3 .使用实例
[47] GenomicAlignments_1.35.0 jsonlite_1.8.4
公式a_1.2-4
[51] survivval_3 .4-0 tools_4.3.0
[53] progress_1.2.2 TFMPvalue_0.0.9
[55] glue_1.6.2 gridExtra_2.3 .
[57] xfun_0.36 dplyr_1.0.10
[59] BiocManager_1.30.19 fastmap_1.1.0
[61] rhdf5filters_1.11.0
[63]王晓明
[65] digest_0.6.31 R6_2.5.1
[67] colorspace_2.0-3 GO.db_3.16.0
[69] gtools_3.9.4 poweRlaw_0.70.6
[71] jpeg_0.1-10 dichromat_2.0-0.1
[73] [font =宋体]
[75]李国强
[77] generics_0.1.3 data.table_1.14.6
[79] prettyunits_1.1.1 htmlwidgets_1.6.0
[81] TFBSTools_1.37.0 pkgconfig_2.0.3
[83] gtable_0.3.1 blob_1.2.3
[85] htmltools_0.5.4 ProtGenerics_1.31.0
[87] scales_1.2.1 png_0.1-8
[89] [font =宋体]
[91] tzdb_0.3.0 reshape2_1.4.4
[93] rjson_0.2.21 checkmate_2.1.0
[95] curl_4.3.3 cachem_1.0.6
[97] rhdf5_2.43.0 string_1 .5.0
[99] parallel_4.3.0 foreign_0.8-84
[101] restfulr_0.0.15 pillar_1.8.1
[103] vctrs_0.5.1 dbplyr_2.2.1
[105] xtable_1.8-4 cluster_2.1.4
[107] htmlTable_2.4.1 Rgraphviz_2.43.0
[109] evaluate_0.19 readr_2.1.3
[111] cli_3.5.0 compiler_4.3.0
[113]刘志刚
[115] interp_1.1-3 plyr_1.8.8
[117] [font =宋体]宋体
[119] BiocParallel_1.33.7 assertthat_0.2.1
[121]王晓明
[123]杨晓东
[125] hms_1.1.2 bit64_4.0.5
[127] ggplot2_3.4.0 Rhdf5lib_1.21.0
[129] KEGGREST_1.39.0 highr_0.9
[131] . memise_2.0.1 bslib_0.4.2
[133] bit_4.0.5