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1 Licensing

Under the Artistic License, you are free to use and redistribute this software.

2 Introduction

Exploratory analysis using polychromatic [6] and mass [5] �ow cytometry to-
gether with modern computational tools (e.g., [1�4,9]) often result in identi�ca-
tion of complex cell populations that cannot be easily described using a limited
number of markers. GateFinder attempts to identify a series of gates (i.e. poly-
gon �lters on 2-dimensional scatter plots) that can discriminate between a target
cell population and other cells.

Brie�y, the analysis consists of three steps:

1. Project the data points into all possible pairs of dimensions. Use robust
statistics to exclude outliers [8]. Calculate a convex hull (a convex polygon
around the remaining data points) [7].

2. Calculate F-measure values for all available gates. Select the best one.
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3. Depending on software con�gurations (see the update.gates parameter)
either go to 1 or 2 unless the maximum number of iterations has been
reached.

3 Basic Functionality

This example uses part of a publicly available bone marrow mass cytometry
dataset [5]. In this speci�c subset of the dataset cells were stimulated by
lipopolysaccharide (LPS) and the response was measured phosphorylation of
p38 mitogen-activated protein kinase (p38 MAPK). A random subset of 1000
cells were selected for this analysis to comply with BioConductor's size and run
time requirements. The optimal number of cells for GateFinder depends on the
number of parameters in the search space, the size of the target population,
and the desired purity. GateFinder expects transformed data. This dataset was
previously transformed with the arcsinhTransform() function from the �owCore
package, using parameters a = 0, b = 0.2, c = 0. Original analysis of the data
revealed that the majority of the p38 MAPK response is in the CD11b+ mono-
cytes. Here, we will use GateFinder to derive a speci�c gating strategy for the
LPS-responsive cell population.

First, we select the target cell population by gating the phospho-p38 marker
(dimension number 34) and selecting all cells with intensity greater than 3.5:

> library(GateFinder)

> library(flowCore)

> data(LPSData)

> targetpop <- (exprs(rawdata)[,34] > 3.5)

> plot(exprs(rawdata)[ , c(2,34)], pch='.', col=targetpop+1,

+ xlab='Cell Length', ylab='p-p38')

> abline(h=3.5, col=3, lwd=2, lty=2)
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Next, we select the markers that should be considered for the gating strategy
and run the core GateFinder() function:

> x=exprs(rawdata)[ , prop.markers]

> colnames(x)=marker.names[prop.markers]

> results=GateFinder(x, targetpop)

Now we can create a scatter plot of each gating step. GateFinder's plot.GateFinder()
function accepts 4 arguments specifying the raw data, the output of theGateFinder()
function, the layout of �gure panels to assemble in the plot, and a logical mask
specifying the target cells. The original target cells are highlighted in red. Gray
cells were excluded in one of the previous gating steps. Black cells are cells that
are not in the original target population. This analysis suggests that the target
population is CD33+CD34+CD11b+CD3+.

> plot (x, results, c(2,3), targetpop)
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We can also visualize the F-measure, precision (i.e., �purity�), and recall (i.e.,
�yield�) of each step. As expected, making the gating more strict (by including
more gating steps) increases the precision and decreases the recall of the gating
strategy.

> plot(results)
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4 Advanced Parameters

GateFinder's functionality can be controled using two parameters: the out-
lier.percentile value controls the robustness of the convex hulls (polygon gates)
to outliers and the beta value controls the relative impact of precision and recall
on the F-measure calculations.

Higher values for the outlier.percentile parameter make the gates less strict
(and therefore will increase precision and decrease recall):

> results=GateFinder(x, targetpop, outlier.percentile=0.5)

> plot (x, results, c(2,3), targetpop)

> plot(results)
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Similarly, a beta value smaller than 1 increases in the impact of precision on
the F-measure calculations. In the following calculations a value of 0.5 makes
precision twice as important as recall. Therefore the algorithm modi�es the
gating strategy to increase the precision of the gating strategy. This is achieved
by combining CD11b and CD33 in the very �rst gate at the cost of a decreased
recall.

> results=GateFinder(x, targetpop, beta=0.5)

> plot (x, results, c(2,3), targetpop)

> plot(results)
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