
Package ‘dasper’
November 25, 2022

Title Detecting abberant splicing events from RNA-sequencing data

Version 1.9.0

Date 2021-08-05

Description The aim of dasper is to detect aberrant splicing events
from RNA-seq data. dasper will use as input both junction and
coverage data from RNA-seq to calculate the deviation of each
splicing event in a patient from a set of user-defined controls.
dasper uses an unsupervised outlier detection algorithm to score each
splicing event in the patient with an outlier score representing
the degree to which that splicing event looks abnormal.

License Artistic-2.0

URL https://github.com/dzhang32/dasper

BugReports https://support.bioconductor.org/t/dasper

biocViews Software, RNASeq, Transcriptomics, AlternativeSplicing,
Coverage, Sequencing

Encoding UTF-8

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.1.2

Suggests AnnotationFilter, BiocStyle, covr, ensembldb, GenomicState,
knitr, lifecycle, markdown, recount, RefManageR, rmarkdown,
sessioninfo, testthat, tibble

VignetteBuilder knitr

Imports basilisk, BiocFileCache, BiocParallel, data.table, dplyr,
GenomeInfoDb, GenomicFeatures, GenomicRanges, ggplot2, ggpubr,
ggrepel, grid, IRanges, magrittr, megadepth, methods,
plyranges, readr, reticulate, rtracklayer, S4Vectors, stringr,
SummarizedExperiment, tidyr

Depends R (>= 4.0)

StagedInstall no

1

https://github.com/dzhang32/dasper
https://support.bioconductor.org/t/dasper

2 annotate_junc_ref

Config/testthat/edition 3

Config/testthat/parallel true

git_url https://git.bioconductor.org/packages/dasper

git_branch master

git_last_commit 7fc89b3

git_last_commit_date 2022-11-01

Date/Publication 2022-11-25

Author David Zhang [aut, cre] (<https://orcid.org/0000-0003-2382-8460>),
Leonardo Collado-Torres [ctb] (<https://orcid.org/0000-0003-2140-308X>)

Maintainer David Zhang <david.zhang.12@ucl.ac.uk>

R topics documented:
annotate_junc_ref . 2
coverage_norm . 3
dasper . 6
junctions_example . 7
junction_annot . 7
junction_load . 10
outlier_aggregate . 12
plot_sashimi . 15
ref_load . 17

Index 18

annotate_junc_ref Deprecated function: Annotate junctions using reference annotation

Description

annotate_junc_ref is deprecated, please use junction_annot instead. annotates junctions by
whether their start and end position precisely overlaps with a known exon boundary. Using this
information along with the strand, junctions are categorised into "annotated", "novel_acceptor",
"novel_donor", "novel_combo", "novel_exon_skip", "ambig_gene" and "none".

Usage

annotate_junc_ref(junc_metadata, gtf)

.get_ref_exons_annot(
junc_metadata,
ref_exons,
ref_cols = c("strand", "gene_name", "gene_id", "transcript_id", "exon_id")

)

https://orcid.org/0000-0003-2382-8460
https://orcid.org/0000-0003-2140-308X

coverage_norm 3

.tidy_junc_annot(
junc_metadata,
cols_to_merge = c("strand", "gene_name", "gene_id")

)

.classify_junc(junc_metadata, ref_junc)

.get_gr_for_start_end(gr)

.merge_lists(x, y)

Arguments

junc_metadata junction metadata in a GRanges-class format, the essential component being the
junction co-ordinates.

gtf either path to gtf or object of class ensemblGenome loaded using refGenome.

Value

junction metadata as a GRanges-class object with additional columns that detail overlapping genes/transcripts/exons
and junction categories.

coverage_norm Processing coverage

Description

The set of functions prefixed with "coverage_" are used to process coverage data. They are designed
to be run after you have processed your junctions in the order coverage_norm, coverage_score.
Or, alternatively the wrapper function coverage_process can be used to run the 2 functions stated
above in one go. For more details of the individual functions, see "Details".

Usage

coverage_norm(
junctions,
ref,
unannot_width = 20,
coverage_paths_case,
coverage_paths_control,
coverage_chr_control = NULL,
load_func = .coverage_load,
bp_param = BiocParallel::SerialParam(),
norm_const = 1

)

coverage_process(

4 coverage_norm

junctions,
ref,
unannot_width = 20,
coverage_paths_case,
coverage_paths_control,
coverage_chr_control = NULL,
load_func = .coverage_load,
bp_param = BiocParallel::SerialParam(),
norm_const = 1,
score_func = .zscore,
...

)

coverage_score(junctions, coverage, score_func = .zscore, ...)

Arguments

junctions junction data as a RangedSummarizedExperiment-class object.

ref either path to gtf/gff3 or object of class TxDb-class or EnsDb-class. EnsDb-class
is required if you intend to annotate junctions with gene symbols/names.

unannot_width integer scalar determining the width of the region to obtain coverage from when
the end of of a junction does not overlap an existing exon.

coverage_paths_case

paths to the BigWig files containing the coverage of your case samples.

coverage_paths_control

paths to the BigWig files for control samples.

coverage_chr_control

either "chr" or "no_chr", indicating the chromosome format of control coverage
data. Only required if the chromosome format of the control BigWig files is
different to that of your cases.

load_func a function to use to load coverage. Currently only for internal use to increase
testing speed.

bp_param a BiocParallelParam-class instance denoting whether to parallelise the loading
of coverage across BigWig files.

norm_const numeric scaler to add to the normalisation coverage to avoid dividing by 0s and
resulting NaN or Inf values.

score_func function to score junctions by their abnormality. By default, will use a z-score
but can be switched to a user-defined function. This function must take as input
an x and y argument, containing case and control counts respectively. This must
return a numeric vector equal to the length of x with elements corresponding to
a abnormality of each junction.

... additional arguments passed to score_func.

coverage list containing normalised coverage data that is outputted from coverage_norm.

coverage_norm 5

Details

coverage_process wraps all "coverage_" prefixed functions in dasper. This is designed to simplify
processing of the coverage data for those familiar or uninterested with the intermediates.

coverage_norm obtains regions of interest for each junction where coverage disruptions would be
expected. These consist of the intron itself the overlapping exon definitions (if ends of junctions
are annotated), picking the shortest exon when multiple overlap one end. If ends are unanno-
tated, coverage_norm will use a user-defined width set by unannot_width. Then, coverage will be
loaded using megadepth and normalised to a set region per junction. By default, the boundaries of
each gene associated to a junction are used as the region to normalise to.

coverage_score will score disruptions in the coverage across the intronic/exonic regions associ-
ated with each junction. This abnormality score generated by score_func operates by calculating
the deviation of the coverage in patients to a coverage across the same regions in controls. Then,
for each junction it obtains the score of the region with the greatest disruption.

Value

junctions as SummarizedExperiment object with additional assays named "coverage_region" and
"coverage_score". "coverage_region" labels the region of greatest disruption (1 = exon_start, 2 =
exon_end, 3 = intron) and "coverage_score" contains the abnormality scores of the region with the
greatest disruption.

Functions

• coverage_norm: Load and normalise coverage from RNA-sequencing data

• coverage_score: Score coverage by their abnormality

Examples

Set up txdb

use GenomicState to load txdb (GENCODE v31)
ref <- GenomicState::GenomicStateHub(

version = "31",
genome = "hg38",
filetype = "TxDb"

)[[1]]

Set up BigWig

obtain path to example bw on recount2
bw_path <- recount::download_study(

project = "SRP012682",
type = "samples",
download = FALSE

)[[1]]

junction_process

https://github.com/ChristopherWilks/megadepth

6 dasper

junctions_processed <- junction_process(
junctions_example,
ref,
types = c("ambig_gene", "unannotated"),

)

install megadepth

required to load coverage in coverage_norm()
megadepth::install_megadepth(force = FALSE)

coverage_norm

coverage_normed <- coverage_norm(
junctions_processed,
ref,
unannot_width = 20,
coverage_paths_case = rep(bw_path, 2),
coverage_paths_control = rep(bw_path, 2)

)

coverage_score

junctions <- coverage_score(junctions_processed, coverage_normed)

coverage_process

this wrapper will obtain coverage scores identical to those
obtained through running the individual wrapped functions shown below
junctions_w_coverage <- coverage_process(

junctions_processed,
ref,
coverage_paths_case = rep(bw_path, 2),
coverage_paths_control = rep(bw_path, 3)

)

the two objects are equivalent
all.equal(junctions_w_coverage, junctions, check.attributes = FALSE)

dasper dasper: detecting abberant splicing events from RNA-seq data

Description

Placeholder for package description - to be updated

junctions_example 7

junctions_example Set of example junctions

Description

A dataset containing the example junction data for 2 case and 3 control samples outputted from
junction_load. The junctions have been filtered for only those lying on chromosome 21 or 22.

Usage

junctions_example

Format

RangedSummarizedExperiment-class object from SummarizedExperiment detailing the counts,
co-ordinates of junctions lying on chromosome 21/22 for 2 example samples and 3 controls:

assays matrix with counts for junctions (rows) and 5 samples (cols)

colData example sample metadata

rowRanges GRanges-class object describing the co-ordinates and strand of each junction

Source

generated using data-raw/junctions_example.R

junction_annot Processing junctions

Description

The set of functions prefixed with "junction_" are used to process junction data. They are designed
to be run in a sequential manner in the order junction_annot, junction_filter, junction_norm,
junction_score. Or, alternatively the wrapper function junction_process can be used to run all
4 of the functions stated above in one go. For more details of the individual functions, see "Details".

Usage

junction_annot(
junctions,
ref,
ref_cols = c("gene_id", "tx_name", "exon_id"),
ref_cols_to_merge = c("gene_id")

)

junction_filter(

8 junction_annot

junctions,
count_thresh = c(raw = 5),
n_samp = c(raw = 1),
width_range = NULL,
types = NULL,
regions = NULL

)

junction_norm(junctions)

junction_process(
junctions,
ref,
ref_cols = c("gene_id", "tx_name", "exon_name"),
ref_cols_to_merge = c("gene_id"),
count_thresh = c(raw = 5),
n_samp = c(raw = 1),
width_range = NULL,
types = NULL,
regions = NULL,
score_func = .zscore,
...

)

junction_score(junctions, score_func = .zscore, ...)

Arguments

junctions junction data as a RangedSummarizedExperiment-class object.

ref either path to gtf/gff3 or object of class TxDb-class or EnsDb-class. EnsDb-class
is required if you intend to annotate junctions with gene symbols/names.

ref_cols character vector listing the names of the columns in ref for which to annotate
junctions with. Must contain "gene_id", used for categorising junctions.

ref_cols_to_merge

character vector listing which of the annotation columns ref_cols should be
merged into in columns to merge into a single column per junction. Must contain
"gene_id", used for categorising junctions.

count_thresh named vector with names matching the names of the assays in junctions. Val-
ues denote the number of counts below which a junction will be filtered out.

n_samp named vector with names matching the names of the assays in junctions.
Values denotes number of samples that have to express the junction above the
count_thresh in order for that junction to not be filtered.

width_range numeric vector of length 2. The first element denoting the lower limit of junction
width and the second the upper limit. Junctions with widths outside this range
will be filtered out.

types any junctions matching these types, derived form junction_annot will be filtered
out.

junction_annot 9

regions any junctions overlapping this set of regions (in a GRanges-class format) will be
filtered out.

score_func function to score junctions by their abnormality. By default, will use a z-score
but can be switched to a user-defined function. This function must take as input
an x and y argument, containing case and control counts respectively. This must
return a numeric vector equal to the length of x with elements corresponding to
a abnormality of each junction.

... additional arguments passed to score_func.

Details

junction_process wraps all "junction_" prefixed functions in dasper except junction_load. This
is designed to simplify processing of the junction data for those familiar or uninterested with the
intermediates.

junction_annot annotates junctions by 1. whether their start and/or end position precisely over-
laps with an annotated exon boundary and 2. whether that junction matches an intron definition from
existing annotation. Using this information along with the strand, junctions are categorised into
"annotated", "novel_acceptor", "novel_donor", "novel_combo", "novel_exon_skip", "ambig_gene"
and "unannotated".

junction_filter filters out "noisy" junctions based on counts, the width of junctions, annotation
category of the junction returned from junction_annot and whether the junction overlaps with a set
of (blacklist) regions.

junction_norm normalises the raw junction counts by 1. building junction clusters by finding
junctions that share an acceptor or donor position and 2. calculating a proportion-spliced-in (PSI)
for each junction by dividing the raw junction count by the total number of counts in it’s associated
cluster.

junction_score will use the counts contained within the "norm" assay to calculate a deviation of
each patient junction from the expected distribution of control junction counts. The function used
to calculate this abnormality score can be user-inputted or left as the default z-score. Junctions will
also be labelled based on whether they are up-regulated (+1) or down-regulated (-1) with respect to
controls junction and this information is stored in the assay "direction" for use in outlier_aggregate.

Value

RangedSummarizedExperiment-class object containing filtered, annotated, normalised junction data
with abnormality scores.

Functions

• junction_annot: Annotate junctions using reference annotation

• junction_filter: Filter junctions by count, width, annotation or region

• junction_norm: Normalise junction counts by cluster

• junction_score: Score patient junctions by their abnormality

10 junction_load

See Also

ENCODE blacklist regions are recommended to be included as regions for junction_filter and
can be downloaded from https://github.com/Boyle-Lab/Blacklist/blob/master/lists/hg38-blacklist.
v2.bed.gz. Further information can be found via the publication https://www.nature.com/
articles/s41598-019-45839-z.

Examples

Set up txdb

use GenomicState to load txdb (GENCODE v31)
ref <- GenomicState::GenomicStateHub(

version = "31",
genome = "hg38",
filetype = "TxDb"

)[[1]]

junction_annot

junctions <- junction_annot(junctions_example, ref)

junction_filter

junctions <- junction_filter(
junctions,
types = c("ambig_gene", "unannotated")

)

junction_norm

junctions <- junction_norm(junctions)

junction_score

junctions <- junction_score(junctions)

junction_process

junctions_processed <- junction_process(
junctions_example,
ref,
types = c("ambig_gene", "unannotated")

)

the two objects are equivalent
all.equal(junctions_processed, junctions, check.attributes = FALSE)

junction_load Load junctions from RNA-sequencing data

https://github.com/Boyle-Lab/Blacklist/blob/master/lists/hg38-blacklist.v2.bed.gz
https://github.com/Boyle-Lab/Blacklist/blob/master/lists/hg38-blacklist.v2.bed.gz
https://www.nature.com/articles/s41598-019-45839-z
https://www.nature.com/articles/s41598-019-45839-z

junction_load 11

Description

junction_load loads in raw patient and control junction data and formats it into a RangedSummarizedExperiment-
class object. Control samples can be the user’s in-house samples or selected from GTEx v6 data
publicly released through the recount2 and downloaded through snaptron. By default, junction_load
expects the junction data to be in STAR aligned format (SJ.out) but this can be modified via the ar-
gument load_func.

Usage

junction_load(
junction_paths,
metadata = dplyr::tibble(samp_id = stringr::str_c("samp_",
seq_along(junction_paths))),

controls = rep(FALSE, length(junction_paths)),
load_func = .STAR_load,
chrs = NULL,
coord_system = 1

)

Arguments

junction_paths path(s) to junction data.

metadata data.frame containing sample metadata with rows in the same order as junction_paths.

controls either a logical vector of the same length as junction_paths with TRUE rep-
resenting controls. Or, one of "fibroblasts", "lymphocytes", "skeletal_muscle",
"whole_blood" representing the samples of which GTEx tissue to use as con-
trols. By default, will assume all samples are patients.

load_func function to load in junctions. By default, requires STAR formatted junctions
(SJ.out). But this can be switched dependent on the format of the user’s junction
data. Function must take as input a junction path then return a data.frame with
the columns "chr", "start", "end", "strand" and "count".

chrs chromosomes to keep. By default, no filter is applied.

coord_system 1 (1-based) or 0 (0-based) denoting the co-ordinate system corresponding to
the user junctions from junction_paths. Only used when controls is set to
"fibroblasts" to ensure GTEx data is harmonised to match the co-ordinate system
of the user’s junctions.

Value

RangedSummarizedExperiment-class object containing junction data.

Examples

junctions_example_1_path <-
system.file("extdata",

"junctions_example_1.txt",
package = "dasper",
mustWork = TRUE

https://jhubiostatistics.shinyapps.io/recount/
http://snaptron.cs.jhu.edu/

12 outlier_aggregate

)
junctions_example_2_path <-

system.file("extdata",
"junctions_example_2.txt",
package = "dasper",
mustWork = TRUE

)

junctions <-
junction_load(

junction_paths = c(junctions_example_1_path, junctions_example_2_path)
)

junctions

outlier_aggregate Processing outliers

Description

The set of functions prefixed with "outlier_" are used to detect outliers. They are designed to be run
after you have extracted your junctions and coverage based features, in the order outlier_detect,
outlier_aggregate. Or, alternatively the wrapper function outlier_process can be used to run
the 2 functions stated above in one go. For more details of the individual functions, see "Details".

Usage

outlier_aggregate(
junctions,
samp_id_col = "samp_id",
bp_param = BiocParallel::SerialParam()

)

outlier_detect(
junctions,
feature_names = c("score", "coverage_score"),
bp_param = BiocParallel::SerialParam(),
...

)

outlier_process(
junctions,
feature_names = c("score", "coverage_score"),
samp_id_col = "samp_id",
bp_param = BiocParallel::SerialParam(),
...

)

outlier_aggregate 13

Arguments

junctions junction data as a RangedSummarizedExperiment-class object.

samp_id_col name of the column in the SummarizedExperiment that details the sample ids.

bp_param a BiocParallelParam-class instance denoting whether to parallelise the calculat-
ing of outlier scores across samples.

feature_names names of assays in junctions that are to be used as input into the outlier detec-
tion model.

... additional arguments passed to the outlier detection model (isolation forest) for
setting parameters.

Details

outlier_process wraps all "outlier_" prefixed functions in dasper. This is designed to simplify
processing of the detecting outlier junctions for those familiar or uninterested with the intermedi-
ates.

outlier_detect will use the features in assays named feature_names as input into an unsuper-
vised outlier detection algorithm to score each junction based on how outlier-y it looks in relation
to other junctions in the patient. The default expected score and coverage_score features can be
calculated using the junction_process and coverage_process respectively.

outlier_aggregate will aggregate the outlier scores into a cluster-level. It will then rank each
cluster based on this aggregated score and annotate each cluster with it’s associated gene and tran-
script.

Value

DataFrame with one row per cluster detailing each cluster’s associated junctions, outlier scores,
ranks and genes.

Functions

• outlier_aggregate: Aggregate outlier scores from per junction to cluster-level

• outlier_detect: Detecting outlier junctions

See Also

for more details on the isolation forest model used: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html

Examples

Set up txdb

use GenomicState to load txdb (GENCODE v31)
ref <- GenomicState::GenomicStateHub(

version = "31",
genome = "hg38",
filetype = "TxDb"

)[[1]]

14 outlier_aggregate

Set up BigWig

obtain path to example bw on recount2
bw_path <- recount::download_study(

project = "SRP012682",
type = "samples",
download = FALSE

)[[1]]

cache the bw for speed in later
examples/testing during R CMD Check
bw_path <- dasper:::.file_cache(bw_path)

junction_process

junctions_processed <- junction_process(
junctions_example,
ref,
types = c("ambig_gene", "unannotated"),

)

coverage_process

junctions_w_coverage <- coverage_process(
junctions_processed,
ref,
coverage_paths_case = rep(bw_path, 2),
coverage_paths_control = rep(bw_path, 3)

)

outlier_detect

junctions_w_outliers <- outlier_detect(junctions_w_coverage)

outlier_aggregate

outlier_scores <- outlier_aggregate(junctions_w_outliers)

outlier_process

this wrapper will obtain outlier scores identical to those
obtained through running the individual wrapped functions shown below
outlier_processed <- outlier_process(junctions_w_coverage)

the two objects are equivalent
all.equal(outlier_processed, outlier_scores, check.attributes = FALSE)

plot_sashimi 15

plot_sashimi Visualise RNA-seq data in a the form of a sashimi plot

Description

plot_sashimi plots the splicing events and coverage across specific genes/transcripts/regions of
interest. Unlike traditional sashimi plots, coverage and junction tracks are separated, which enables
user’s to choose whether they would like to plot only the junctions.

Usage

plot_sashimi(
junctions,
ref,
gene_tx_id,
gene_tx_col,
case_id = NULL,
sum_func = mean,
region = NULL,
assay_name = "norm",
annot_colour = c(ggpubr::get_palette("jco", 1), ggpubr::get_palette("npg", 7)[c(1, 3,

2, 5, 6)], ggpubr::get_palette("jco", 6)[c(3)]),
digits = 2,
count_label = TRUE,
coverage_paths_case = NULL,
coverage_paths_control = NULL,
coverage_chr_control = NULL,
load_func = .coverage_load,
binwidth = 100

)

Arguments

junctions junction data as a RangedSummarizedExperiment-class object.

ref either path to gtf/gff3 or object of class TxDb-class or EnsDb-class. EnsDb-class
is required if you intend to annotate junctions with gene symbols/names.

gene_tx_id character scalar with the id of the gene. This must be a an identifier for a gene
or transcript, which has a matching entry in ref.

gene_tx_col character scalar with the name of the column to search for the gene_tx_id in
ref.

case_id list containing 1 element. The contents of this element must be a character vector
specifying sample ids that are to be plotted. The name of this element must cor-
respond to the column containing sample ids in the junction SummarizedExperiment::mcols().
By default, all cases will be plotted.

sum_func function that will be used to aggregate the junction counts and coverage for
controls. By default, mean will be used.

16 plot_sashimi

region a GenomicRanges of length 1 that is used to filter the exons/junctions plotted.
Only those that overlap this region are plotted.

assay_name a character scalar with the name of the SummarizedExperiment::assay() from
which to obtain junction counts.

annot_colour character vector length 7, representing the colours of junction types.

digits used in round(), specifying the number of digits to round the junction counts
to for visualisation purposes.

count_label logical value specifying whether to add label the count of each junction.
coverage_paths_case

paths to the BigWig files containing the coverage of your case samples.
coverage_paths_control

paths to the BigWig files for control samples.
coverage_chr_control

either "chr" or "no_chr", indicating the chromosome format of control coverage
data. Only required if the chromosome format of the control BigWig files is
different to that of your cases.

load_func function used to load coverage.

binwidth the number of bases to aggregate coverage across using sum_func when plotting.
.

Value

ggplot displaying the splicing (and coverage) surrounding the transcript/region of interest.

Examples

use GenomicState to load txdb (GENCODE v31)
ref <- GenomicState::GenomicStateHub(

version = "31",
genome = "hg38",
filetype = "TxDb"

)[[1]]

junctions_processed <- junction_process(
junctions_example,
ref,
types = c("ambig_gene", "unannotated")

)

sashimi_plot <- plot_sashimi(
junctions = junction_filter(junctions_processed),
ref = ref,
gene_tx_id = "ENSG00000142156.14",
gene_tx_col = "gene_id",
sum_func = NULL

)

ref_load 17

ref_load Load reference annotation into a TxDb format

Description
ref_load`` loads reference annotation using [makeTxDbFromGFF][GenomicFeatures::makeTxDbFromGFF] if a character or leaves ref‘
unchanged if already a TxDb-class. If you would

Usage

ref_load(ref)

Arguments

ref either path to gtf/gff3 or object of class TxDb-class or EnsDb-class. EnsDb-class
is required if you intend to annotate junctions with gene symbols/names.

Value

a TxDb-class object.

Examples

create a TxDb,
ref <- GenomicState::GenomicStateHub(

version = "31",
genome = "hg38",
filetype = "TxDb"

)[[1]]

alternatively ref can be a character specifying a path to a GTF file
ref <- ref_load(ref)

Index

∗ datasets
junctions_example, 7

∗ internal
annotate_junc_ref, 2

.classify_junc (annotate_junc_ref), 2

.get_gr_for_start_end
(annotate_junc_ref), 2

.get_ref_exons_annot
(annotate_junc_ref), 2

.merge_lists (annotate_junc_ref), 2

.tidy_junc_annot (annotate_junc_ref), 2

annotate_junc_ref, 2
assay, 9
assays, 8, 13

BiocParallelParam-class, 4, 13

coverage_norm, 3, 4
coverage_process, 13
coverage_process (coverage_norm), 3
coverage_score (coverage_norm), 3

dasper, 5, 6, 9, 13

EnsDb-class, 4, 8, 15, 17

GenomicRanges, 16
GRanges-class, 3, 7, 9

junction_annot, 7, 8, 9
junction_filter (junction_annot), 7
junction_load, 7, 9, 10
junction_norm (junction_annot), 7
junction_process, 13
junction_process (junction_annot), 7
junction_score (junction_annot), 7
junctions_example, 7

outlier_aggregate, 9, 12
outlier_detect (outlier_aggregate), 12

outlier_process (outlier_aggregate), 12

plot_sashimi, 15

RangedSummarizedExperiment-class, 4,
7–9, 11, 13, 15

ref_load, 17

SummarizedExperiment, 5, 7, 13

TxDb-class, 4, 8, 15, 17

18

	annotate_junc_ref
	coverage_norm
	dasper
	junctions_example
	junction_annot
	junction_load
	outlier_aggregate
	plot_sashimi
	ref_load
	Index

