Software Manual

Institute of Bioinformatics, Johannes Kepler University Linz

PODKAT

An R Package for Association Testing Involving
Rare and Private Variants

Ulrich Bodenhofer

Institute of Bioinformatics, Johannes Kepler University Linz
Altenberger Str. 69, 4040 Linz, Austria
podkat@bioinf.jku.at

Version 1.14.0, October 6, 2016

Institute of Bioinformatics Tel. +43 732 2468 4520
Johannes Kepler University Linz J z U Fax +43 732 2468 4539
A-4040 Linz, Austria http://www.bioinf.jku.at

mailto:podkat@bioinf.jku.at

Scope and Purpose of this Document

This document is a user manual for PODKAT, an R package implementing non-burden association
tests for rare and private variants, most importantly, the position-dependent kernel association test
(PODKAT). It provides a gentle introduction into how to use PODKAT. Not all features of the R
package are described in full detail. Such details can be obtained from the documentation enclosed
in the R package. Further note the following: (1) this is not an introduction to statistical genetics or
association testing; (2) this is not an introduction to R or any of the Bioconductor packages used in
this document; (3) this is not an introduction to statistical hypothesis testing or probability theory.
If you lack the background for understanding this manual, you first have to read introductory
literature on the subjects mentioned above.

All R code in this document is written to be runnable by any user. However, some of the code
chunks require the download of external files, require an Internet connection, or require too much
computation time to be runnable when the package is built, checked, or installed. The output lines
of R code chunks that are not actually executed when processing this document are marked with
‘4#! 1#4#° and, in case that the user needs to perform extra steps to execute the code, these steps
are listed explicitly.

Contents 3
Contents

1 Introduction 4

2 Installation 6

3 PODKAT for the Impatient 6

4 Training a Null Model 12

5 Selection of Regions of Interest 18

5.1 Regions of Interest for Whole-Genome Association Testing 18

5.2 Regions of Interest for Whole-Exome Association Testing 26

5.3 Defining Custom Regions of Interest 29

6 Performing an Association Test 31

7 Analyzing and Visualizing Results 37

7.1 Multiple Testing Correction i v i it 37

7.2 Visualization e 40

7.3 Filtering Significant Regions 44

7.4 Contributions of Individual Variants, 45

8 Miscellanea 53

8.1 Creating Suitable VCFFiles 53

8.1.1 Softwaretools 53

8.1.2 Merging VCFfiles 54

8.1.3 Concatenating VCFfiles 55

8.14 Filtering VCFfiles 55

8.2 Reading from VCFFiles 55

8.3 Using Genotypes from Other Data Sources 57

8.4 Preparations foraNew Genome 59

8.5 Handling Large DataSets 61

85.1 Chunking e 61

8.5.2 Parallel Processing 62

9 More Details About PODKAT 64

0.1 TestStatistics e 64

9.2 Kernels 68

9.3 Weighting Functions 71

9.4 Computing Single-Variant Contributions 73

9.5 Details on the Small Sample Correction 74

10 Future Extensions 77

11 Change Log 77

12 How to Cite This Package 78

4 1 Introduction

1 Introduction

This user manual describes the R package PODKAT. This R package implements non-burden
association tests for rare and private variants, most importantly, the position-dependent kernel
association test (PODKAT).

Before discussing details of how to use the package, let us first discuss the general aim and
setup of association studies. Suppose we have a certain number of samples (study participants,
patients, etc.) for each of which we can measure/sequence the genotype and for each of which we
know/have measured/have observed a certain trait that we want to study. This trait may be contin-
uous, i.e. real-valued on a continuous scale (for instance, age, height, body mass index, etc.), or
categorical, i.e. from a discrete set of categories (for instance, case vs. control, treatment outcome,
disease type, etc.). In the following, we will only consider continuous traits and categorical traits
with two categories and refer to this case as a binary trait (sometimes called dichotomous trait as
well) with values O or 1.

The goal of association testing is to find out whether there are any statistically significant
associations between the genotype and the trait.

In some studies, additional information about the samples’ phenotypes or environmental con-
ditions is available that might also have an influence on the trait (for instance, age, sex, ethnicity,
family status, etc.). Such additional features can be treated as covariates. More specifically, it
is rather common to train a model that predicts the trait from the covariates first. Then the asso-
ciation between the genotype and those components of the traits is studied which have not been
sufficiently explained by the covariates. In the case of PODKAT, this is done by a kernel-based
variance-component score test [10, 16].

Assume that, for a given set of samples, we are given a trait vector (one entry for each sample),
genotypes of all samples (in matrix format or as a VCF file!), and a matrix of covariates (if any).
Then an association test using PODKAT consists of the following basic steps:

Training of null model: pre-processing of trait vector and covariates (if any) for later use in an
association test (see Section 4);

Selection of regions of interest: specification of one or more genomic regions for which associ-
ation tests should be performed (see Section 5);

Association testing: testing of association between genotype and trait/null model for each se-
lected region of interest (see Section 6);

Analysis of results: post-processing (such as, multiple testing correction or filtering) and visual-
ization of results (see Section 7);

Figure 1 shows a graphical overview of these basic steps along with dependencies and data types.

This manual is organized as follows: after some basic instructions how to install the package
(Section 2), Section 3 provides a simple, yet complete, example that illustrates the general work-
flow. Sections 4-7 provide more details about the steps necessary to perform association tests with
PODKAT. Sections 8—12 provide miscellaneous additional information.

"Variant Call Format; see http://www.1000genomes.org/wiki/analysis/variant-call-format/
vcf-variant-call-format-version-42 for a detailed specification of this file format

http://www.1000genomes.org/wiki/analysis/variant-call-format/vcf-variant-call-format-version-42
http://www.1000genomes.org/wiki/analysis/variant-call-format/vcf-variant-call-format-version-42

1 Introduction 5

Trait (binary or Covariates Genome /
continuous) (if any) Genotypes genome
numeric vector, factor or numeric matrix or matrix or VCF file .
column of data frame columns of data frame annotations

A J

Selection of
regions
of interest

Training of null model

Null model Regions of

linear, logistic linear, or :
Bernoulli distribution interest

A / \ J

Association test

A

Association test results
test statistics, p-values

Post-processing of results Visualization of results
multiple testing correction, filtering Manhattan plot, Q-Q plot

Y

Association test results
filtered / adjusted p-values, Plots
variants' contributions

\ J

Figure 1: Overview of the basic steps of the data analysis pipeline offered by PODKAT for ana-
lyzing associations between traits and genotypes.

6 3 PODKAT for the Impatient

2 Installation

The PODKAT R package (current version: 1.14.0) is available via Bioconductor. The simplest
way to install the package is the following:

if (!requireNamespace("BiocManager", quietly=TRUE))
install.packages("BiocManager")
BiocManager: :install ("podkat")

If you wish to install the package manually instead, you can download the package archive
that fits best to your computer system from the Bioconductor homepage.

To test the installation of the PODKAT package, enter

library(podkat)

in your R session. If this command terminates without any error message or warning, you can be
sure that the PODKAT package has been installed successfully. If so, the PODKAT package is
ready for use now and you can start performing association tests.

3 PODKAT for the Impatient

In order to illustrate the basic workflow, this section presents two simple examples without going
into the details of each step. Let us first retrieve the file names of the example files that are supplied
as part of the PODKAT package:

phenoFilelin <- system.file("examples/examplellin.csv", package="podkat")
phenoFileLog <- system.file("examples/examplellog.csv", package='"podkat")
vcfFile <- system.file("examples/examplel.vcf.gz", package="podkat")

Now let us train the null model for the continuous trait contained in the file examplellin.csv:

pheno.c <- read.table(phenoFileLin, header=TRUE, sep=",")
model.c <- nullModel(y ~ ., pheno.c)
model.c

Linear model:

Number of covariates: 2 (+ intercept)
Number of samples: 200

Variance of residuals: 1.541756

No resampling

The examples are based on the small artificial genome hgA that is also supplied as part of
PODKAT. So we load it first and then partition it into overlapping windows:

3 PODKAT for the Impatient

data(hgh)
hgh

GRanges object with 1 range and O metadata columns:

seqnames ranges strand
<Rle> <IRanges> <Rle>
#H [1] chrl 1-200000 *
#o -

seqinfo: 1 sequence from hgA genome

windows <- partitionRegions(hgl)
windows

GRanges object with 79 ranges and O metadata columns:

segnames ranges strand
<Rle> <IRanges> <Rle>
[1] chri 1-5000 *
[2] chril 2501-7500 *
[3] chri 5001-10000 £
[4] chril 7501-12500 *
[5] chri 10001-15000 *
50a 200 5aa 5
[75] chrl 185001-190000 *
[76] chrl 187501-192500 *
[771] chrl 190001-195000 *
[78] chrl 192501-197500 *
[79] chrl 195001-200000 *
#H o -

seqginfo: 1 sequence from hgA genome

The VCF file used for these two examples is small enough to be loadable at once:

geno <- readGenotypeMatrix(vcfFile)
geno

Genotype matrix:

Number of samples: 200
Number of variants: 962
#it

Mean MAF: 0.05674116
Median MAF: 0.0075

Minimum MAF: 0.0025

Maximum MAF: 0.455

Now we can already perform the two association tests. Let us start with the continuous trait:

8 3 PODKAT for the Impatient

res.c <- assocTest(geno, model.c, windows)
print(res.c)

Overview of association test:

Null model: linear

Number of samples: 200

Number of regions: 79

Number of regions without variants: O
Average number of variants in regioms: 24.1
Genome: hgh

Kernel: linear.podkat

p-value adjustment: none

#H#

Overview of significance of results:
Number of tests with p < 0.05: 8

#H#

Results for the 8 most significant regions:

segnames start end width n Q p-value
1 chri 7501 12500 5000 31 769748.34 1.294084e-07
2 chrl 10001 15000 5000 33 764828.81 4.874460e-06
3 chrl 140001 145000 5000 15 79937.68 3.599077e-03
4 chri 5001 10000 5000 34 152555.30 9.785569e-03
5 chr1l 132501 137500 5000 21 89287.55 1.349559e-02
6 chrl 142501 147500 5000 23 94629.68 3.338620e-02
#Ht 7 chrl 42501 47500 5000 19 58191.23 3.341032e-02
8 chri 25001 30000 5000 23 103713.12 3.754557e-02

Now we perform multiple testing correction:

res.c <- p.adjust(res.c)
print(res.c)

Overview of association test:

Null model: linear

Number of samples: 200

Number of regiomns: 79

Number of regions without variants: O
Average number of variants in regioms: 24.1
Genome: hgh

Kernel: linear.podkat

p-value adjustment: holm

##

Overview of significance of results:
Number of tests with p < 0.05: 8

Number of tests with adj. p < 0.05: 2

3 PODKAT for the Impatient 9

#it
Results for the 8 most significant regions:
segnames start end width n Q p.value
1 chr1 7501 12500 5000 31 769748.34 1.294084e-07
2 chrli 10001 15000 5000 33 764828.81 4.874460e-06
3 chrl 140001 145000 5000 15 79937.68 3.599077e-03
4 chri 5001 10000 5000 34 152555.30 9.785569e-03
5 chrl 132501 137500 5000 21 89287.55 1.349559e-02
6 chrl 142501 147500 5000 23 94629.68 3.338620e-02
7 chrl 42501 47500 5000 19 58191.23 3.341032e-02
8 chrl 25001 30000 5000 23 103713.12 3.754557e-02
iz p.value.ad]j
1 1.022327e-05
2 3.802079e-04
3 2.771289e-01
4 7.437033e-01
5 1.000000e+00
6 1.000000e+00
7 1.000000e+00
8 1.000000e+00
Finally, we create a Manhattan plot:
plot(res.c, which="p.value.adj")
1 200,000
o e !
< 4
. -
& P
8
o o
o 4
| | | | |
0 50,000 100,000 150,000 200,000

Chromosome chrl of hgA

For a binary trait, the whole pipeline looks the same. The nul1Model () function automatically
detects that the trait is binary and this information is passed on to the subsequent steps without the
need of making additional settings:

10 3 PODKAT for the Impatient

pheno.b <- read.table(phenoFileLog, header=TRUE, sep=",")
model.b <- nullModel(y ~ ., pheno.b)

small sample correction applied

model.b

Logistic model:

Number of covariates: 2 (+ intercept)

Number of samples: 200

Number of positives (cases): 10

No resampling

Adjustment of higher moments: 10000 repeats (bootstrap)

Now we can already perform the association tests for the binary trait. This time, however,
we do not load the entire genotype first, but we let assocTest () read from the VCEF file directly
(which is only done piece by piece in order to avoid excessive use of memory):

res.b <- assocTest(vcfFile, model.b, windows)
print(res.b)

Overview of association test:

Null model: logistic

Number of samples: 200

Number of regiomns: 79

Number of regions without variants: O
Average number of variants in regioms: 24.1
Genome: hgh

Kernel: linear.podkat

p-value adjustment: none

##

Overview of significance of results:
Number of tests with p < 0.05: 23

T

Results for the 10 most significant regions:

segnames start end width n Q p-value
1 chrl 7501 12500 5000 31 38386.55 1.828167e-05
2 chrl 10001 15000 5000 33 43084.90 4.156230e-05
3 chrl 22501 27500 5000 27 25640.34 7.801524e-04
4 chrl 20001 25000 5000 23 16120.63 2.424690e-03
b chrl 25001 30000 5000 23 10650.48 3.935653e-03
6 chrl 77501 82500 5000 17 4890.26 7.083429e-03
7 chrl 87501 92500 5000 30 12891.61 7.611585e-03
8 chrl 35001 40000 5000 23 22436.29 7.926316e-03
9 chrl 37501 42500 5000 25 22570.67 8.980398e-03
10 chrl 27501 32500 5000 27 32423.04 9.919251e-03

3 PODKAT for the Impatient

Multiple testing correction again:

res.b <- p.adjust(res.b)
print(res.b)

Overview of association test:

Null model: logistic

Number of samples: 200

Number of regiomns: 79

Number of regions without variants: O
Average number of variants in regioms: 24.1
Genome: hgh

Kernel: linear.podkat

p-value adjustment: holm

##

Overview of significance of results:
Number of tests with p < 0.05: 23

Number of tests with adj. p < 0.05: 2

#H

Results for the 10 most significant regions:

seqnames start end width n Q p.value
1 chri 7501 12500 5000 31 38386.55 1.828167e-05
2 chrl 10001 15000 5000 33 43084.90 4.156230e-05
3 chrl 22501 27500 5000 27 25640.34 7.801524e-04
4 chrl 20001 25000 5000 23 16120.63 2.424690e-03
b chrl 25001 30000 5000 23 10650.48 3.935653e-03
6 chrl 77501 82500 5000 17 4890.26 7.083429e-03
7 chrl 87501 92500 5000 30 12891.61 7.611585e-03
8 chrl 35001 40000 5000 23 22436.29 7.926316e-03
9 chrl 37501 42500 5000 25 22570.67 8.980398e-03
10 chrl 27501 32500 5000 27 32423.04 9.919251e-03
p.value.adj

1 0.001444252

2 0.003241860

3 0.060071732

4 0.184276424

5 0.295174011

6 0.524173744

7 0.555645737

8 0.570694719

9 0.637608280

10 0.694347583

Finally, we create a Manhattan plot:

12 4 Training a Null Model

plot(res.b, which="p.value.adj")

1 200,000
| |

~logso(p)

0.05

00 05 10 15 20 25

I I I I I
0 50,000 100,000 150,000 200,000

Chromosome chrl of hgA

The following sections provide details and more background information about the functions used
in the above steps.

4 Training a Null Model

Before an association test can be performed, we have to pre-process the trait vector and create a
so-called null model, i.e. a probabilistic model of the trait under the null assumption that the trait
is independent of the genotype and only depends on the covariates (if any). PODKAT currently
offers three types of such null models:

Linear model: the trait is continuous and depends linearly on the covariates, i.e.
_ T
Y=oy + o -X+E¢,

where y is the trait, oy is the intercept, « is a weight vector, x is the vector of covariates, and
¢ is normally distributed random noise. If there are no covariates, y is normally distributed
around the intercept .

Logistic linear model: the trait is binary and depends on the covariates in the following way
(with the same notations as above):

logit(p(y =1)) = oo + ol x

If there are no covariates, y is a binary Bernoulli-distributed random variable with constant
p(y = 1) = logit ™ (ap) = 1/(1 + exp(—ayp)).

Bernoulli-distributed trait: the trait is binary, does not depend on any covariates, and follows a
simple Bernoulli distribution with constant p.

4 Training a Null Model 13

PODKAT offers one function nul1lModel () that allows for the creation of any of the above
three types of null models. In order to demonstrate how nullModel() works, we first load two
examples that are shipped with the PODKAT package.

For the subsequent examples, we consider the two data frames pheno. ¢ and pheno . b that we
created in Section 3 and investigate them in more detail. The object pheno.c is a data frame with
two covariate columns and one column y containing a continuous trait:

colnames(pheno.c)
[1] IIX‘lll IIX‘2II llyll

summary (pheno.c)

#it X.1 X.2 v

Min. :-2.75343 Min. :-3.56170 Min. :-2.9853
1st Qu.:-0.68484 1st Qu.:-0.78153 1st Qu.:-0.3625
Median : 0.04127 Median :-0.02714 Median : 0.5965
Mean : 0.02007 Mean :-0.03562 Mean : 0.5835
3rd Qu.: 0.78158 3rd Qu.: 0.73964 3rd Qu.: 1.6966
Max. 1 2.29429 Max. 1 2.73488 Max. 3.8589

The object pheno.b is a data frame with two covariate columns and one column y containing
a binary trait.

colnames(pheno.b)
[1] IIX‘lll IIX‘2II llyll

summary (pheno.b)

#it X.1 X.2 v

Min. :-2.75343 Min. :-3.56170 Min. :0.00
1st Qu.:-0.68484 1st Qu.:-0.78153 1st Qu.:0.00
Median : 0.04127 Median :-0.02714 Median :0.00
Mean : 0.02007 Mean :-0.03562 Mean :0.05
3rd Qu.: 0.78158 3rd Qu.: 0.73964 3rd Qu.:0.00
Max. 2.29429 Max. 1 2.73488 Max. :1.00

table(pheno.b$y)

it
#* 0 1
190 10

14 4 Training a Null Model

As we have seen in Section 3 already, the simplest way of creating a null model is to call
nullModel () via the formula interface, in a way that is largely analogous to the R standard
functions 1m() and glm():

model.c <- nullModel(y ~ ., pheno.c)
model.c

Linear model:

Number of covariates: 2 (+ intercept)
Number of samples: 200

Variance of residuals: 1.541756

No resampling

model.b <- nullModel(y ~ ., pheno.b)

small sample correction applied

model.b

Logistic model:

Number of covariates: 2 (+ intercept)

Number of samples: 200

Number of positives (cases): 10

No resampling

Adjustment of higher moments: 10000 repeats (bootstrap)

Note that, in the above calls to nul1lModel (), we did not explicitly specify the type of the
model. Whenever the type argument is not specified, nullModel () tries to guess the right type
of model. If the trait vector/column is a factor or a numeric vector containing only 0’s and 1’s
(where both values must be present, otherwise an association test would be meaningless), the trait
is supposed to be binary and a logistic linear model is trained, unless the following conditions are
satisfied:

1. The number of samples does not exceed 100.

2. No intercept and no covariates have been specified.

If these two conditions are fulfilled for a binary trait, nullModel() considers the trait as a
Bernoulli-distributed random variable (i.e. as the third type of model described above). If the
trait is numeric and not binary, a linear model is trained. If the user wants to enforce a specific
type of model explicitly, he/she can do so by setting the argument type to one of the three choices
"linear", "logistic", or "bernoulli" (see ?nullModel for details).

An example using only the intercept, but no covariates:

4 Training a Null Model 15

nullModel(y ~ 1, pheno.c)

Linear model:

Only intercept (no covariates)
Number of samples: 200

Variance of residuals: 2.089638
No resampling

An example in which we want to consider the traits as a Bernoulli-distributed variable:

nullModel(y ~ O, pheno.b, type="bernoulli")

Simple Bernoulli model:

Raw phenotypes (no covariates, no intercept)
Number of samples: 200

Number of positives (cases): 10

No resampling

Apart from the formula interface used above, nul1lModel () also allows for supplying a co-
variate matrix as first argument X (optional, omit if no covariates should be considered) and a trait
vector as second argument y:

covX <- as.matrix(pheno.c[, 1:2])
traitY <- pheno.c$y
nullModel(covX, traitY)

Linear model:

Number of covariates: 2 (+ intercept)
Number of samples: 200

Variance of residuals: 1.541756

No resampling

nullModel (y=traitY)

Linear model:

Only intercept (no covariates)
Number of samples: 200

Variance of residuals: 2.089638
No resampling

covX <- as.matrix(pheno.b[, 1:2])
traitY <- pheno.b$y
nullModel(covX, traitY)

16 4 Training a Null Model

small sample correction applied

Logistic model:

Number of covariates: 2 (+ intercept)

Number of samples: 200

Number of positives (cases): 10

No resampling

Adjustment of higher moments: 10000 repeats (bootstrap)

nullModel (y=traitY)

#% small sample correction applied

Logistic model:

Only intercept (no covariates)

Number of samples: 200

Number of positives (cases): 10

No resampling

Adjustment of higher moments: 10000 repeats (bootstrap)

nullModel (y=traitY, type="bernoulli')

Simple Bernoulli model:

Raw phenotypes (no covariates, no intercept)
Number of samples: 200

Number of positives (cases): 10

No resampling

In the same way this works for many other R functions, it is also possible to attach the data
frame with the phenotype data (trait plus covariates) to the global environment. Then it is no
longer necessary to the pass the data frame to the nullModel () function. However, one has to be
more cautious with the selection of the covariates. The option to simply select all covariates with
. is no longer available then.

attach(pheno.c)
nullModel(y ~ X.1 + X.2)

Linear model:

Number of covariates: 2 (+ intercept)
Number of samples: 200

Variance of residuals: 1.541756

No resampling

Regardless of the type of model and of which interface has been used to call nul1Model (), the

4 Training a Null Model 17

function always creates an R object of class Nul1Model (the objects named model . c and model.b
in the examples above) that can be used in subsequent association tests.

Variance-score component tests based on linear logistic models may not necessarily determine
the null distribution of the test statistic correctly [8, 10] and, therefore, they may not control the
type-I error rate correctly. Following a philosophy inspired by the SKAT package [8, 16] PODKAT
offers two means to counteract this issue:

Resampling: under the null assumption that the trait only depends on the covariates (if any)
and not on the genotype, a certain number of model residuals are sampled. Then, when
association testing is performed, p-values are computed also for all these sampled residuals,
and an additional estimated p-value is computed as the relative frequency of p-values of
sampled residuals that are at least as significant as the test’s p-value. The number of sampled
residuals is controlled with the n.resampling argument (the default is 0) and the type of
sampling procedure is controlled with the type.resampling argument (see 7nullModel
for more details).

Small sample correction and adjustment of higher moments: Lee ef al. [8] proposed a correc-
tion of the null distribution for small samples and a sampling method for adjusting higher
moments of the null distribution of the test statistic (see also Subsections 9.1 and 9.5). POD-
KAT implements both corrections (see Subsection 9.5 about implementation details). The
argument ad j controls whether the null model is created such that any of the two corrections
can be used later. The default is that the corrections are switched on for samples sizes up to
2,000, while adj="force" always turns corrections on and adj="none" always turns cor-
rections off. The adjustment of higher moments requires sampled null model residuals. The
number of those is controlled with the n.resampling.adj argument and the type of sam-
pling procedure is again controlled with the type .resampling argument (see ?nullModel
and Subsection 9.5 for more details).

For linear models, there is no need for any correction of the null distribution (cf. Subsection 9.1).
Consequently, small sample correction is not available for linear models. Resampling, however, is
available for linear models, too. None of the two methods is available for association tests using a
Bernoulli-distributed trait.

Some examples showing how to control resampling and small sample corrections for logistic
linear models:

nullModel(y ~ ., pheno.b, n.resampling=1000, adj="none")

Logistic model:

Number of covariates: 2 (+ intercept)
Number of samples: 200

Number of positives (cases): 10

Resampling: 1000 repeats (bootstrap)

nullModel(y ~ ., pheno.b, n.resampling.adj=2000)

small sample correction applied

18 5 Selection of Regions of Interest

Logistic model:

Number of covariates: 2 (+ intercept)

Number of samples: 200

Number of positives (cases): 10

No resampling

Adjustment of higher moments: 2000 repeats (bootstrap)

5 Selection of Regions of Interest

Association tests with PODKAT typically consider multiple regions of interest along the samples’
genome. The most common scenarios are whole-genome association testing, whole-exome as-
sociation testing, or association tests for specific user-defined regions. In the following, we will
highlight the basic steps necessary for each of these three scenarios.

5.1 Regions of Interest for Whole-Genome Association Testing

Suppose that the samples’ genotypes have been determined by whole-genome sequencing or any
other technology that covers variants across the whole genome. The first step for this case is
to define the genome and where it has been sequenced. PODKAT comes with four ready-made
GRangesList objects (see Bioconductor package GenomicRanges) that define these regions for
autosomal chromosomes, sex chromosomes, and the mitochondrial DNA of the human genome.
Those objects are called hg18Unmasked, hgl9Unmasked, hg38Unmasked, b36Unmasked, and
b37Unmasked. The three former are the standard hg18, hg19, and hg38 builds as shipped with
the Bioconductor packages

m BSgenome.Hsapiens.UCSC.hgl8.masked,
m BSgenome.Hsapiens.UCSC.hgl9.masked, and

m BSgenome.Hsapiens.UCSC.hg38.masked.

The two latter are basically the same regions as in hg18Unmasked and hg19Unmasked, but with
chromosomes named as in the genomes b36 and b37 that are frequently used by the Genome
Analysis Toolkit (GATK).? The five objects are available upon data() calls as in the following
example:

data(hg38Unmasked)
hg38Unmasked

GRangesList object of length 31:
$chri
GRanges object with 15 ranges and O metadata columns:

’https://wuw.broadinstitute.org/gatk/

https://www.broadinstitute.org/gatk/

5 Selection of Regions of Interest

19

#it
#it
it
#it
it
#it
it
#it
it
#i#
it
#it
#it
it
#it

segnames ranges strand
<Rle> <IRanges> <Rle>

[1] chri 10001-207666 *
[2] chril 257667-297968 *
[3] chri 347969-535988 *
[4] chril 585989-2702781 *
[5] chri 2746291-12954384 *
[11] chrl 125131848-125171347 *
[12] chrl 125173584-125184587 *
[13] chrl 143184588-223558935 *
[14] chrl 223608936-228558364 *
[15] chrl 228608365-248946422 *

<30 more elements>

#i

seqinfo: 25 sequences (1 circular) from hg38 genome

names (hg38Unmasked)

[1] "chri" "chr2" "chr3" "chr4"
[7] "chr7" "chr8" "chr9" "chri0"
[13] "chr13" ‘'chri4" ‘"chrilb" ‘'chri6"
[19] "chr19" 'chr20" "chr2i" ‘'"chr22"
[25] "chrM" "X.PAR1" "X.PAR2" "X.XTR"
[31] "Y.XTR"

hg38Unmasked$chri

"chrb"
"chri1l"
"chri7"
"chrX"
"Y.PAR1"

"chr6"
"chri2"
"chr18"
"chry"
"Y.PAR2"

GRanges object with 15 ranges and O metadata columns:

#it
it
#i#t
it
#it
it
#it
#it
it
#it
it
#it
it
#it
it

seqnames ranges strand
<Rle> <IRanges> <Rle>
[1] chri 10001-207666 *
[2] chri 257667-297968 *
[3] chri 347969-535988 *
[4] chri 585989-2702781 *
(5] chri 2746291-12954384 *
[11] chrl 125131848-125171347 *
[12] chrl 125173584-125184587 *
[13] chrl 143184588-223558935 *
[14] chrl 223608936-228558364 *
[15] chrl 228608365-248946422 *
seqinfo: 25 sequences (1 circular) from hg38 genome

20 5 Selection of Regions of Interest

Table 1: Overview of how the GRangesList objects hgl8Unmasked, hgl9Unmasked,
hg38Unmasked, b36Unmasked, and b37Unmasked are organized: each row corresponds to one
chromosome/sequence of the human genome and lists the names of those list components that
contain regions from these chromosomes/sequences.

’ Chromosome ‘hg*Unmasked ‘b36Unmasked ‘b37Unmasked

1 llchrlll l|1|| ||1||

22 "chr22" "22" 22"

X "chrX", "X.PARL", | "X", "X.PAR1", "X, "X.PARL",
"X.PAR2", "X.XTR" | "X.PAR2", "X.XTR" | "X.PAR2", "X.XTR"

Y "chrY", "Y.PARL", | "Y", "Y.PAR1", "Y' Y PARL",
"Y.PAR2", "Y.XTR" | "Y.PAR2", "Y.XTR" | "Y.PAR2", "Y.XTR"

mtDNA "chrM" "M "MT"

seqinfo(hg38Unmasked)

Seqinfo object with 25 sequences (1 circular) from hg38 genome:
seqnames seqlengths isCircular genome

chril 248956422 FALSE hg38
chr2 242193529 FALSE hg38
chr3 198295559 FALSE hg38
chrd 190214555 FALSE hg38
chrb 181538259 FALSE hg38
#it oo oo bac aoa
chr21l 46709983 FALSE hg38
chr22 50818468 FALSE hg38
chrX 156040895 FALSE hg38
chry 57227415 FALSE hg38
chrM 16569 TRUE hg38

All four objects are organized in the same way; they consist of 31 components: one for each
of the 22 autosomal chromosomes, one for each of the two sex chromosomes, one for the mito-
chondrial DNA, and two for each of the three pseudoautosomal regions. This structure has been
chosen to allow the user to consider different chromosomes and pseudoautosomal regions sepa-
rately. Table 1 gives an overview of the list components of each of those GRangesList objects,
how their list components are named, and how they relate to chromosomes in the human genome.

A simpler structure can be created easily. As an example, the pseudoautosomal regions can be
re-united with the X and Y chromosomes as follows:

hg38basic <- hg38Unmasked[paste0("chr", 1:22)]
hg38basic$chrX <- reduce(unlist(hg38Unmasked[c("chrX", "X.PAR1",

5 Selection of Regions of Interest 21

"X.PAR2", "X.XTR™1]))
hg38basic$chrY <- reduce(unlist(hg38Unmasked[c("chrY", "Y.PAR1",

"Y.PAR2", "Y.XTR™)]))
hg38basic

GRangesList object of length 24:

$chri

GRanges object with 15 ranges and O metadata columns:
segnames ranges strand
<Rle> <IRanges> <Rle>
[1] chri 10001-207666 *
[2] chril 257667-297968 *
[3] chril 347969-535988 *
[4] chril 585989-2702781 *
[5] chri 2746291-12954384 *
s0a 200 5aa 5
[11] chrl 125131848-125171347 *
[12] chrl 125173584-125184587 *
[13] chrl 143184588-223558935 *
[14] chrl 223608936-228558364 *
[15] chrl 228608365-248946422 *
##

...

<23 more elements>

i

seqinfo: 25 sequences (1 circular) from hg38 genome
names (hg38basic)

[1] "chri" "chr2" "chr3" "chr4" "chrb5" "chr6" "chr7"
[8] "chr8" "chr9" ‘"chrlO" "chriil" '"chri12" '"chrl3" '"chrid"
[15] "chrib" "chri6" "chri7" "chri8" "chri19" "chr20" "chr21"
[22] "chr22" "chrX" ‘'chry"

If the user prefers to have all unmasked regions in one single GRanges object, this can be done
as follows:

hg38all <- reduce(unlist(hg38Unmasked))
hg38all

GRanges object with 357 ranges and O metadata columns:

segnames ranges strand
<Rle> <IRanges> <Rle>
[1] chril 10001-207666 &

[2] chri 257667-297968 *

22 5 Selection of Regions of Interest
#H (3] chril 347969-535988

#H [4] chril 585989-2702781

#H (5] chrl 2746291-12954384 *

T S

#HH [353] chrY 21750315-21789281 *

TH [354] chrY 21805282-26673214 *

#H# [355] chrY 56673215-56771509 *

#H [356] chrY 56821510-57217415 *

#H [357] chrM 1-16569 *

-

seqinfo: 25 sequences (1 circular) from hg38 genome

If association testing should be done for any other genome, the user must specify unmasked

regions as a GRanges or GRangesList object first. This can be done manually, but it is more
convenient to start from a MaskedBSgenome object. Subsection 8.4 provides more details.

It makes little sense to perform association tests for whole chromosomes (or unmasked re-

gions thereof). The most common approach is to split these regions into overlapping windows
of (almost) equal lengths. In order to do this conveniently, PODKAT provides the function
partitionRegions(). A toy example:

gr <- GRanges(segnames="chrl", ranges=IRanges(start=1, end=140000))
partitionRegions(gr, width=10000, overlap=0.5)

GRanges object with 27 ranges and O metadata columns:

#i#
it
#i#
it
#it
#it
H#it
#it
it
#it
it
#it
it
#i#
it

segnames ranges strand
<Rle> <IRanges> <Rle>

[1] chril 1-10000 *
[2] chri 5001-15000 *
[3] chril 10001-20000 *
[4] chril 15001-25000 *
[5] chril 20001-30000 *
[23] chrl 110001-120000 *
[24] chrl 115001-125000 *
[25] chrl 120001-130000 *
[26] chrl 125001-135000 *
[27] chrl 130001-140000 *

seqinfo: 1 sequence from an unspecified genome; no seqlengths

partitionRegions(gr, width=15000, overlap=0.8)

GRanges object with 43 ranges and O metadata columns:

#i#t
it

seqnames ranges strand
<Rle> <IRanges> <Rle>

5 Selection of Regions of Interest 23

[1] chri 1-14500 *
[2] chri 2501-17500 *
[3] chri 5501-20500 *
i [4] chri 8501-23500 *
(5] chri 11501-26500 *
iz o o o ..
[39] chrl 113501-128500 *
[40] chrl 116501-131500 *
[41] chrl 119501-134500 *
[42] chrl 122501-137500 *
[43] chrl 125501-140000 *
##H -

seqinfo: 1 sequence from an unspecified genome; no seqlengths

partitionRegions(gr, width=10000, overlap=0)

GRanges object with 14 ranges and O metadata columns:

segnames ranges strand
<Rle> <IRanges> <Rle>
##t [1] chri 1-10000 *
[2] chri 10001-20000 *
#H [3] chri 20001-30000 *
T [4] chr1 30001-40000 *
#H# [5] chr1 40001-50000 *
T 500 s0c 500 oc
[10] chrl 90001-100000 %
[11] chrl 100001-110000 *
[12] chrl 110001-120000 *
[13] chrl 120001-130000 *
[14] chrl 130001-140000 *
#H -

seqinfo: 1 sequence from an unspecified genome; no seqlengths

Obviously, the width argument controls the width of the windows (the default is 5,000) and
the overlap argument controls the relative overlap (the default is 0.5, which corresponds to 50%
overlap). The windows are placed such that possible overhangs are balanced at the beginning and
end of the partitioned region.

The choice of the right window width is crucial. If the windows are too narrow, causal regions
may be split across multiple windows which may impair statistical power and requires more ag-
gressive multiple testing correction. However, if the windows are too large, associations may be
diluted by the large number of variants considered by every single test. We recommend a width
between 5,000 bp and 50,000 bp along with 50% overlap.

If called for a GRanges object, partitionRegions() returns a GRanges object with parti-
tioned regions. If called for a GRangesList object, partitionRegions () returns a GRangesList

24 5 Selection of Regions of Interest

object, where each component of the output object corresponds to the partitioning of one of the
components of the input object.

partitionRegions(hg38Unmasked, width=20000)

GRangesList object of length 31:

$chri

GRanges object with 23041 ranges and O metadata columns:
seqnames ranges strand
<Rle> <IRanges> <Rle>
[1] chril 10001-28833 *
[2] chri 18834-38833 *
[3] chril 28834-48833 *
[4] chri 38834-58833 *
(5] chri 48834-68833 *
ce R . ..
[23037] chrl 248887394-248907393 *
[23038] chril 248897394-248917393 *
[23039] chrl 248907394-248927393 *
[23040] chrl 248917394-248937393 *
[23041] chrl 248927394-248946422 *
##

...

<30 more elements>

##H -

seqinfo: 25 sequences (1 circular) from hg38 genome

The partitionRegions() functions also allows for partitioning only a subset of chromo-
somes. This can be done by specifying the chrs argument, e.g. chrs="chr22" only consid-
ers regions on chromosome 22 and omits all other regions. This works both for GRanges and
GRangesList objects. However, partitionRegions() works for any GRangesList object and
makes no prior assumption about which chromosomes appear in each of the list components.
Technically, this means that all list components will be searched for regions that lie on the speci-
fied chromosome(s). The GRangesList objects hg18Unmasked, hg19Unmasked, hg38Unmasked,
b36Unmasked, and b37Unmasked included in the PODKAT package, however, are organized that
all list components only contain regions from one chromosome (see Table 1). Therefore, it is
not necessary to search all list components. The following example does this more efficiently by
restricting to chromosomes 21 and 22 from the beginning:

partitionRegions(hg38Unmasked[c("chr21", "chr22")], width=20000)

GRangesList object of length 2:

$chr21
GRanges object with 3997 ranges and O metadata columns:
seqnames ranges strand

<Rle> <IRanges> <Rle>

5 Selection of Regions of Interest

25

#t# [1]
i [2]
#t# [3]
i [4]
#t# [5]
i o
[3993]
[3994]
[3995]
[3996]
[3997]
##

i

chr21 5010001-5028123
chr21 5018124-5038123
chr21 5028124-5048123
chr21 5038124-5058123
chr21 5048124-5068123

chr21 46641223-46661222
chr21 46651223-46671222
chr21 46661223-46681222
chr21 46671223-46691222
chr21 46681223-46699983

<1 more element>

B -
seqinfo: 25 sequences (1 circular) from hg38 genome

L I I

* X K X X -

The following call using the chrs argument would give exactly the same result as the com-
mand above, but takes approximately 10 times as much time:

partitionRegions(hg38Unmasked, chrs=c("chr21", "chr22"), width=20000)

##! '## GRangesList object of length 2:
##!1## $chr2l

##! ' ## GRanges object with 3997 ranges and O metadata columns:

#it! 144
#iHH
#it! 144
#i#H
#it! 144
#i##
#it) 1 H4
#i4##
#it! 1 H4
#iV4##
#HHH
Hit! 144
#HHH
#it! V44
#i#H

[1]
[2]
(3]
[4]
(5]

[3993]
[3994]
[3995]
[3996]
[3997]

seqnames
<Rle>
chr21 [6010001,
chr21 (5018124,
chr21 [6028124,
chr21 [5038124,
chr21 [6048124,

chr21 [46641223,
chr21 [46651223,
chr21 [46661223,
chr21 [46671223,
chr21 [46681223,

##!'## <1 more element>

#i##

##114## seqinfo: 25 sequences (1 circular) from hg38 genome

ranges strand

<IRanges>
5028123]
5038123]
5048123]
5058123]
5068123]

46661222]
46671222]
46681222]
46691222]
46699983]

<Rle>
*

* X ¥ *

E I R

26 5 Selection of Regions of Interest

5.2 Regions of Interest for Whole-Exome Association Testing

Suppose that the samples’ genotypes have been determined by whole-exome sequencing. In
this case, it makes little sense to use a partition of the whole genome as regions of interest.
Instead, the best way is to use exactly those regions that have been targeted by the capturing
technology. If these regions are available as a BED file3, this file can be read with the function
readRegionsFromBedFile (). In the following example, we demonstrate this for a BED file that
specifies the regions targeted by the Illumina® TruSeq Exome Enrichment Kit. The regions are
based on the hg19 human genome build. In order to ma