Package ‘metaseqR’

March 30, 2021

Type Package

Title An R package for the analysis and result reporting of RNA-Seq
data by combining multiple statistical algorithms.

Author Panagiotis Moulos <moulos@fleming.gr>
Maintainer Panagiotis Moulos <moulos@fleming.gr>
Depends R (>=3.4.0), EDASeq, DESeq, limma, qvalue

Imports edgeR, NOISeq, baySeq, NBPSeq, biomaRt, utils, gplots,
corrplot, vsn, brew, rjson, log4r

Suggests BiocGenerics, GenomicRanges, rtracklayer, Rsamtools,
survcomp, VennDiagram, knitr, zoo, RUnit, BiocManager,
BSgenome, RSQLite

Enhances parallel, TCC, RMySQL

Description Provides an interface to several normalization and
statistical testing packages for RNA-Seq gene expression data.
Additionally, it creates several diagnostic plots, performs
meta-analysis by combinining the results of several statistical
tests and reports the results in an interactive way.

License GPL (>=3)
Encoding UTF-8
LazyLoad yes
LazyData yes

URL http://www.fleming.gr

biocViews ImmunoOncology, Software, GeneExpression,
DifferentialExpression, WorkflowStep, Preprocessing,
QualityControl, Normalization, ReportWriting, RNASeq

VignetteBuilder knitr
Version 1.30.0
Date 2020-04-04

Collate 'metaseqr.annotation.R' 'metaseqr.argcheck.R'
'metaseqr.count.R' 'metaseqr-data.R' 'metaseqr.export.R’
'metaseqr.filter.R' 'metaseqr.json.R' 'metaseqr.main.R’
'metaseqr.meta.R' 'metaseqr.norm.R' 'metaseqR-package.R'
'metaseqr.plot.R' 'metaseqr.query.R' 'metaseqr.sim.R’
'metaseqr.stat.R' 'metaseqr.util.R' 'zzz.R'


http://www.fleming.gr

2 R topics documented:

PackageStatus Deprecated

git_url https://git.bioconductor.org/packages/metaseqR
git_branch RELEASE_3_12

git_last_commit 42215cd

git_last_commit_date 2020-10-27

Date/Publication 2021-03-29

R topics documented:

metaseqR-package . . . . . ... 4
as.Class.VeCtOr . . . . . . .. 5
build.eXport . . . . . . . 6
calcflscore . . . . . . .. e 7
calc.otr . . . L e 8
cddat. . . . e 9
cdplot . . . . e 9
check.contrast.format . . . . . . . ... L 10
checkfile.args . . . . . . . . . e 11
check.graphics.file . . . . . . .. . ... 11
check.graphics.type . . . . . . . . L 12
check.libsize . . . . . . . . . . 12
check.main.args . . . . . . . . . ... e 13
check.num.args . . . . . . . L 13
check.packages . . . . . . . . L 14
check.parallel . . . . . . . . ... 15
check.text.args . . . . . . . . L 15
combine.bonferroni . . . . . . ... 16
COMDINE.MAXD « « « v v v v v e v e e e e e e e e e e e e e e e e e 16
COMbDINE.MIND . . . . . o vt it e e e e e e e e e e e e e e e e e e 17
combINe.SIMES . . . . . . . o v vt e e e e e 18
combine.weight . . . . . . . ... 18
construct.gene.model . . . . . ... L. e 19
construct.utrmodel . . . . .. L. 20
diagplotavg.ftd . . . . . . . . L 21
diagplot.boxplot . . . . . . . L e 22
diagplot.cor . . . . .. e e e e e 23
diagplot.de.heatmap . . . . . . . . . ... 24
diagplot.edaseq . . . . . . . ... e e 25
diagplot.filtered . . . . . . . . . . L 26
diagplot.ftd . . . . . . . .. e 27
diagplot.mds . . . . . . . . . 28
diagplot.metaseqr . . . . . . . .. ... e 29
diagplot.nOiSeq . . . . . . . o e e e e e 31
diagplot.noiseq.saturation . . . . . . . . .. ... 32
diagplot.pairs . . . . . . . . e e 33
diagplot.roc . . . . . . . e 34
diagplot.venn . . . . . . .. L e e e e e 35
diagplot.volcano . . . . . . . . . L. e 36
disp . . . e e 37

downsample.counts . . . . . ... L e e e 38



R topics documented: 3

estimate.aufc.weights . . . . . . ... 39
estimate.Sim.params . . . . . . . v v vt e e e e e e e e e e e e e e 40
filtereXons . . . . . . . .. e 41
filter.genes . . . . . . . . 42
filterhigh . . . . . . . . 43
filterdow . . . . . . L 44
fishermethod . . . . . . . . . . ... 44
fishermethod.perm . . . . . . . . ... Lo 46
fisher.sum . . . . . . .. 47
geLannoOtation . . . . . . . . ... e e e e e e e e e e e e e 48
GELALE . . . . . e 49
getDIOtYPes . . . . . . e 50
get.bs.organism . . ... L. L e e e e e 51
get.dataset . . . ... L e e 51
getdefaults . . . . . . . 52
get.ensembl.annotation . . . . ... ... L. oL e 53
getexon.attributes . . . . . . . ... L e 54
GELEC.CONENE . . . . v v v v it e e e e e e e e e e e e e e e e e 54
get.gene.attributes . . . . ... Lo 55
gethost . . . . L 56
GELPIESELOPLS .« . v v o v e e e e e e e e e e e e e e e e e 56
getstrict.biofilter . . . . . . . ... oo 57
get.transcriptutrattributes . . . . ... Lo e 58
EeL.UCSC.ANNOtAtION . . . . . . v v i e e e e e e e e e e e e e 58
getucsc.credentials . . . . ... e 59
getucsc.dbl . . ..o 60
GELUCSC.OTZANISIN . . . . . v v v vttt e et e et e e e e e e 61
GELUCSC.UETY .« « . v v v v e et e e et e e e e e e e e e 61
get.ucsc.tabledef . . . ... L 62
getucsc.tbl.tpl . . . ... 63
get.valid.chrs . . . . . L 63
geL.WEIghES . . . . . e e e e e 64
graphics.close . . . . . . . L 65
graphiCs.open . . . . . . . . . .. e 65
hgl9.eXOn.counts . . . . . . . . . . e e e e 66
libsizelist.hgl9 . . . . . . . . 66
libsizelistmm9 . . . . . . ... 67
load.bs.genome . . . . . .. oL e e 67
log2disp . . . . . . 68
make.avg.eXpression . . . . ... ..o e e e e e e 68
make.contrast.list . . . . ... 69
make.export.list . . . ... 70
make.fold.change . . . . . . . . ... 70
make.grid . . . . ... e 71
make.highcharts.points . . . . . . . . . .. L 72
make.htmlbody . . . . . . . .. 72
make.html.cells . . . . . . . .. e 73
make.htmlheader . . . . . . . ... 74
make.htmlrows . . . . . . 74
make.html.table . . . . . . . ... Lo 75
make.matrix . . . . . . .. e e e 76

make.path.struct . . . . . ..o e 77



4 metaseqR-package
make.permutation . . . . . . ... L e e e e 77
make.project.path . . . . . ... 78
Make.report.MmesSages . . . . . . .ttt e e e e e e e e e 78
make.sample.list . . . ... 79
make.sim.data.sd . ... 80
make.sim.data.tcc . . . . ... L e e 81
make.stat . . . ... e 82
make.transformation . . . . ... L. L 82
MAKE.VENILAIEAS . . . . o o v o o e e e e e e e e e e e e e e e e e 83
make.venn.colorscheme . . . . . . . . . ... L 84
MAaKE.VENILCOUNLS . . . . . . v vt e e et e e e e e e e e e 85
make.Vvenn.pairs . . . . . . . ... L. e 85
METAPEIM . . . . v v v v e e e e e e e e e e e e e e e e 86
Meta.test . . . . . . . e e e e e e e e e e e e e e e 87
meta.worker . . . ..o 89
0T 2 T ) A 90
mlfo . . .. 104
mmO.geNE.COUNLS . . . . . . . . . ot e e e e e e 105
nat2log . ..o 105
normalize.deseq . . . . . . . .. L. 106
normalize.edaseq . . . . . . . .. L. 107
normalize.edger . . . . . . . . ... L 108
normalize.nbpseq . . . . . ... 109
normalize.noiseq . . . . . . ... L. 110
readfar@ets . . . . ..o e e e 111
1ead2COUNt . . . . . . . L e e e e e e e e e e 112
redUCE.BXONS . . . o o v i it e e e e 113
reduce.gene.data . . . . ... L L Ll e e 114
sample.list.hgl9 . . . . . .. o 115
sample.listmmO9 . . . . ... 115
SELATE . . v v e e e 116
statbayseq . . . . . . . ... e 116
stat.deseq . . ... . 117
stat.edger . . .. ... 118
stat.limma . . . ... 119
statnbpseq . . ... 120
SLALNOISEq .« « ¢ v v o e e e e e e e e e e e 121
validate.alg.args . . . . . . . . .. 122
validate.list.args . . . . . . ... 123
WapPLy . . . e e e e 124
wp.adjust ..o e 125

Index 126

metaseqR-package The metaseqR Package

Description

An R package for the analysis and result reporting of RNA-Seq gene expression data, using multiple
statistical algorithms.



as.class.vector 5

Details
Package: metaseqR
Type: Package
Version: 1.9.1
Date: 2015-07-27

Depends: R (>=2.13.0), EDASeq, DESeq, limma, NOISeq, baySeq
Encoding:  UTF-8

License: GPL (>=3)

LazyLoad: yes

URL: http://www.fleming.gr

Provides an interface to several normalization and statistical testing packages for RNA-Seq gene
expression data. Additionally, it creates several diagnostic plots, performs meta-analysis by com-
binining the results of several statistical tests and reports the results in an interactive way.

Author(s)

Panagiotis Moulos <moulos@fleming.gr>

as.class.vector Create a class vector

Description

Creates a class vector from a sample list. Internal to the stat.* functions. Mostly internal use.

Usage
as.class.vector(sample.list)
Arguments
sample.list the list containing condition names and the samples under each condition.
Value

A vector of condition names.

Author(s)

Panagiotis Moulos

Examples

sample.list <- list(A=c("A1","A2"),B=c("B1","B2","B3"))
clv <- as.class.vector(sample.list)



6 build.export

build.export Results export builder

Description

This function help build the output files of the metaseqr pipeline based on several elements produced
during the pipeline execution. It is intended for internal use and not available to the users.

Usage
build.export(gene.data, raw.gene.counts,
norm.gene.counts, flags, sample.list, cnt,
statistics, raw.list, norm.list,
p.mat = matrix(NA, nrow(gene.data), length(statistics)),
adj.p.mat = matrix(NA, nrow(gene.data), length(statistics)),
sum.p = rep(NA, nrow(gene.data)),
adj.sum.p = rep(NA, nrow(gene.data)),
export.what = c("annotation”, "p.value”, "adj.p.value”, "meta.p.value”,
"adj.meta.p.value”, "fold.change”, "stats"”, "counts”,6"flags"),
export.scale = c("natural”, "log2", "logl1@", "rpgm”, "vst"),
export.values = c("raw”", "normalized"),
export.stats = c("mean”, "median", "sd", "mad”, "cv", "rcv"),
log.offset = 1, report = TRUE)
Arguments
gene.data an annotation data frame (such the ones produced by get.annotation).

raw.gene.counts

a matrix of filtering flags (0,1), created by the filtering functions.
norm.gene.counts

a matrix of normalized gene counts.

flags
sample.list
cnt
statistics
raw.list
norm.list
p.mat
adj.p.mat
sum.p
adj.sum.p
export.what
export.scale
export.values
export.stats
log.offset

report

a matrix of normalized gene counts.
see the documentation of metaseqr.
the statistical contrast for which the export builder is currently running.

the statistical tests used (see the documentation of metaseqr).

a list of transformed un-normalized counts, see the documentation of make. transformation.

a list of transformed normalized counts, see the documentation of make . transformation.
a matrix of p-values, see the documentation of metaseqr.

a matrix of adjusted p-values, see the documentation of metaseqr.

a vector of combined p-values, see the documentation of metaseqr.

a vector of adjusted combined p-values, see the documentation of metaseqr.

see the documentation of metaseqr.

see the documentation of metaseqr.

see the documentation of metaseqr.

see the documentation of metaseqr.

see the documentation of metaseqr.

see the documentation of metaseqr.



calc.flscore 7

Value

A list with three members: a data frame to be exported in a text file, a long string with the result in
a html formatted table (if report=TRUE) and the column names of the output data frame.

Author(s)

Panagiotis Moulos

Examples

## Not run:
# Not yet available

## End(Not run)

calc.f1score Calculate the F1-score

Description

This function calculates the F1 score (2*(precision*recall/precision+racall) or 2*TP/(2*TP+FP+FN)
given a matrix of p-values (one for each statistical test used) and a vector of ground truth (DE or
non-DE). This function serves as a method evaluation helper.

Usage
calc.fl1score(truth, p, sig = 0.05)
Arguments
truth the ground truth differential expression vector. It should contain only zero and
non-zero elements, with zero denoting non-differentially expressed genes and
non-zero, differentially expressed genes. Such a vector can be obtained for ex-
ample by using the make.sim.data. sd function, which creates simulated RNA-
Seq read counts based on real data. It MUST be named with gene names, the
same as in p.
p a p-value matrix whose rows correspond to each element in the truth vector.
If the matrix has a colnames attribute, a legend will be added to the plot using
these names, else a set of column names will be auto-generated. p can also be a
list or a data frame. In any case, each row (or element) MUST be named with
gene names (the same as in truth).
sig a significance level (0 < sig <=1).
Value

A named list with two members. The first member is a data frame with the numbers used to calculate
the TP/(FP+FN) ratio and the second member is the ratio TP/(FP+FN) for each statistical test.

Author(s)

Panagiotis Moulos



8 calc.otr

Examples

pl <- 0.001*matrix(runif(300),100,3)

p2 <- matrix(runif(300),100,3)

p <- rbind(p1,p2)

rownames(p) <- paste(”gene",1:200,sep="_")

colnames(p) <- paste("method”,1:3,sep="_")

truth <- c(rep(1,40),rep(-1,40),rep(0,20),rep(1,10),
rep(2,10),rep(0,80))

names(truth) <- rownames(p)

f1 <- calc.fl1score(truth,p)

calc.otr Calculate the ratio TP/(FP+FN)

Description

This function calculates the ratio of True Positives to the sum of False Positives and False Negatives
given a matrix of p-values (one for each statistical test used) and a vector of ground truth (DE or
non-DE). This function serves as a method evaluation helper.

Usage
calc.otr(truth, p, sig = 0.05)
Arguments
truth the ground truth differential expression vector. It should contain only zero and
non-zero elements, with zero denoting non-differentially expressed genes and
non-zero, differentially expressed genes. Such a vector can be obtained for ex-
ample by using the make.sim.data. sd function, which creates simulated RNA-
Seq read counts based on real data. It MUST be named with gene names, the
same as in p.
p a p-value matrix whose rows correspond to each element in the truth vector.
If the matrix has a colnames attribute, a legend will be added to the plot using
these names, else a set of column names will be auto-generated. p can also be a
list or a data frame. In any case, each row (or element) MUST be named with
gene names (the same as in truth).
sig a significance level (0 < sig <=1).
Value

A named list with two members. The first member is a data frame with the numbers used to calculate
the TP/(FP+FN) ratio and the second member is the ratio TP/(FP+FN) for each statistical test.

Author(s)

Panagiotis Moulos



cddat

Examples

pl <- 0.001*matrix(runif(300),100,3)

p2 <- matrix(runif(300),100,3)

p <- rbind(p1,p2)

rownames(p) <- paste(”gene",1:200,sep="_")

colnames(p) <- paste(”"method”,1:3,sep="_")

truth <- c(rep(1,40),rep(-1,40),rep(0,20),rep(1,10),
rep(2,10),rep(0,890))

names(truth) <- rownames(p)

otr <- calc.otr(truth,p)

cddat Old functions from NOISeq

Description

Old functions from NOISeq to create the "readnoise” plots. Internal use only.

Usage
cddat(input)
Arguments
input input to cddat.
Value

a list with data to plot.

Note

Adopted from an older version of NOISeq package (author: Sonia Tarazona).

Author(s)

Panagiotis Moulos

cdplot Old functions from NOISeq

Description

Old functions from NOISeq to create the "readnoise” plots. Internal use only.

Usage

cdplot(dat, samples = NULL, ...)



10 check.contrast.format

Arguments
dat the returned list from cddat.
samples the samples to plot.
further arguments passed to e.g. par.
Value

Nothing, it created the old RNA composition plot.

Note

Adopted from an older version of NOISeq package (author: Sonia Tarazona)

Author(s)

Panagiotis Moulos

check.contrast.format Contrast validator

Description

Checks if the contrast vector follows the specified format. Internal use only.

Usage
check.contrast.format(cnt, sample.list)
Arguments
cnt contrasts vector.
sample.list the input sample list.
Author(s)

Panagiotis Moulos

Examples

sample.list <- list(A=c("A1","A2"),B=c("B1","B2","B3"))
cnt <- c("A_vs_B") # Will work

#cent <- c("A_vs_C") ## Will throw error!
check.contrast.format(cnt,sample.list)



check file.args

11

check.file.args File argument validator

Description

Checks if a file exists for specific arguments requiring a file input. Internal use only.

Usage
check.file.args(arg.name, arg.value)
Arguments
arg.name argument name to display in a possible error.
arg.value the filename to check.
Author(s)

Panagiotis Moulos

Examples

# OK

check.file.args("file",system.file("metaseqr_report.html”,
package="metaseqgR"))

## Error!

#check.file.args("file"”,system.file("metaseqr_report.htm”,

# package="metasegR"))

check.graphics.file Check graphics file

Description

Graphics file checker. Internal use only.

Usage
check.graphics.file(o)
Arguments
) the plotting device, see main metaseqr function
Author(s)

Panagiotis Moulos



12 check.libsize

check.graphics.type Check plotting device

Description

Plotting device checker. Internal use only.

Usage
check.graphics. type (o)
Arguments
o) the plotting device, see main metaseqr function
Author(s)

Panagiotis Moulos

check.libsize Library size validator

Description

Checks the names of the supplied library sizes. Internal use only.

Usage

check.libsize(libsize.list, sample.list)

Arguments

libsize.list  the samples-names library size list.

sample.list the input sample list.

Author(s)

Panagiotis Moulos

Examples

sample.list <- list(A=c("A1","A2"),B=c("B1","B2","B3"))
libsize.list.1 <- list(Al1=1e+6,A2=1.1e+6,B1=1.2e+6,
B2=1.3e+6,B3=1.5e+6)

libsize.list.2 <- list(Al=1e+6,A2=1.1e+6,B1=1.2e+6,

B2=1.3e+6)

check.libsize(libsize.list.1,sample.list) # Will work
#check.libsize(libsize.list.2,sample.list) # Will throw error!



check.main.args

13

check.main.args

Main argument validator

Description

Checks if the arguments passed to metaseqr are valid and throws a warning about the invalid ones
(which are ignored anyway because of the . .. in metaseqr. However, for this reason this function
is useful as some important parameter faults might go unnoticed in the beginning and cause a failure

afterwards.

Usage

check.main.args(main.args)

Arguments

main.args

Author(s)

Panagiotis Moulos

a list of parameters with which metaseqr is called (essentially, the output of
match.call.

check.num.args

Numeric argument validator

Description

Checks if one or more given numeric argument(s) satisfy several rules concerning numeric argu-
ments, e.g. proper bounds or proper format (e.g. it must be a number and not a character). Mostly

for internal use.

Usage

check.num.args(arg.name, arg.value, arg.type, arg.bounds,
direction)

Arguments

arg.name
arg.value

arg.type

arg.bounds

the name of the argument that is checked (for display purposes).
the value(s) of the argument to be checked.

either the string "numeric” to denote generic double-like R numerics or "integer”
for integer values.

a numeric or a vector with 2 elements, restraining arg.value to be within the
bounds defined by the input vector or e.g. larger (smaller) than the numeric
value. See examples.



14 check.packages

direction a string denoting to which direction the arg.value should be compared with
arg.bounds. For example, "both” should be given with a two element vector
against which, arg.value will be checked to see whether it is smaller than the
low boundary or larger than the higher boundary. In that case, the function
will throw an error. The direction parameter can be one of: "both” (described
above), "botheq” (as above, but the arg.val is also checked for equality -
closed intervals), "gt" or "gte" (check whether arg.val is smaller or smaller
than or equal to the first value of arg.bounds), "1t"” or "1te"” (check whether
arg.val is larger or larger than or equal to the first value of arg.bounds).

Author(s)

Panagiotis Moulos

Examples

pcut <- 1.2 # A probability cannot be larger than 1! It will throw an error!
#check.num.args("pcut”,pcut, "numeric”,c(@,1), "botheq”)

pcut <- 0.05 # Pass

check.num.args("pcut”,pcut, "numeric”,c(0,1),"botheq")

gc.col <- 3.4 # A column in a file cannot be real! It will throw an error!
#check.num.args("gc.col”,gc.col,"integer",0,"gt")

gc.col <- 5L # Pass

check.num.args("gc.col”,gc.col,"integer”,0,"gt")

check.packages Required packages validator

Description

Checks if all the any required packages, not attached during installation or loading, are present
according to metaseqR input options. Internal use only.

Usage
check.packages(m, p)
Arguments
m meta-analysis method.
p QC plot types.
Author(s)

Panagiotis Moulos

Examples

check.packages(c("simes"”,"whitlock”),

non

c("gcbias”,"correl™))



check.parallel 15

check.parallel Parallel run validator

Description

Checks existence of multiple cores and loads multicore package.

Usage
check.parallel(rc)
Arguments
rc fraction of available cores to use.
Author(s)

Panagiotis Moulos

Examples

multic <- check.parallel(@.8)

check.text.args Text argument validator

Description

Checks if one or more given textual argument(s) is/are member(s) of a list of correct arguments. It’s
a more package-specific function similar to match. arg. Mostly for internal use.

Usage
check.text.args(arg.name, arg.value, arg.list,
multiarg=FALSE)

Arguments

arg.name the name of the argument that is checked (for display purposes).

arg.value the value(s) of the argument to be checked.

arg.list a vector of valid argument values for arg.value to be matched against.

multiarg a logical scalar indicating whether arg. name accepts multiple arguments or not.

In that case, all of the values in arg.value are checked against arg.list.

Author(s)

Panagiotis Moulos



16 combine.maxp

Examples

# OK
check.text.args("count.type"”, "gene”,c("gene", "exon"),
multiarg=FALSE)

## Error!
#check.text.args("statistics"”, "ebseq”,c("deseq”, "edger”,
# "noiseq”,"bayseq”,"”limma"), multiarg=TRUE)
combine.bonferroni Combine p-values with Bonferroni’s method
Description

This function combines p-values from the various statistical tests supported by metaseqR using the
Bonferroni’s method (see reference in the main metaseqr help page or in the vignette).

Usage
combine.bonferroni(p)
Arguments
p a p-value matrix (rows are genes, columns are statistical tests).
Value

A vector of combined p-values.

Author(s)

Panagiotis Moulos

Examples

p <- matrix(runif(300),100,3)
pc <- combine.bonferroni(p)

combine.maxp Combine p-values using the maximum p-value

Description
This function combines p-values from the various statistical tests supported by metaseqR by taking
the maximum p-value.

Usage

combine.maxp(p)



combine.minp 17

Arguments

p a p-value matrix (rows are genes, columns are statistical tests).

Value

A vector of combined p-values.

Author(s)

Panagiotis Moulos

Examples

p <- matrix(runif(300),100,3)
pc <- combine.maxp(p)

combine.minp Combine p-values using the minimum p-value

Description

This function combines p-values from the various statistical tests supported by metaseqR by taking
the minimum p-value.

Usage
combine.minp(p)
Arguments
p a p-value matrix (rows are genes, columns are statistical tests).
Value

A vector of combined p-values.

Author(s)

Panagiotis Moulos

Examples

p <- matrix(runif(300),100,3)
pc <- combine.minp(p)



18 combine.weight

combine.simes Combine p-values with Simes’ method

Description

This function combines p-values from the various statistical tests supported by metaseqR using the
Simes’ method (see reference in the main metaseqr help page or in the vignette).

Usage
combine.simes(p)
Arguments
p a p-value matrix (rows are genes, columns are statistical tests).
Value

A vector of combined p-values.

Author(s)

Panagiotis Moulos

Examples

p <- matrix(runif(300),100,3)
pc <- combine.simes(p)

combine.weight Combine p-values using weights

Description

This function combines p-values from the various statistical tests supported by metaseqR using
p-value weights.

Usage
combine.weight(p, w)
Arguments
a p-value matrix (rows are genes, columns are statistical tests).
w a weights vector, must sum to 1.
Value

A vector of combined p-values.



construct.gene.model 19

Author(s)

Panagiotis Moulos

Examples

p <- matrix(runif(300),100,3)
pc <- combine.weight(p,w=c(0.2,0.5,0.3))

construct.gene.model  Assemble a gene model based on exon counts

Description

This function assembles gene models (single genes, not isoforms) based on the input exon read
counts file and a gene annotation data frame, either from an external file provided by the user, or
with the get.annotation function. The gene.data argument should have a specific format and
for this reason it’s better to use one of the two aforementioned ways to supply it. This function is
intended mostly for internal use but can be used if the requirements are met.

Usage
construct.gene.model(exon.counts, sample.list, gene.data,
multic = FALSE)
Arguments
exon.counts the exon counts data frame produced by reading the exon read counts file.
sample.list the list containing condition names and the samples under each condition.
gene.data an annotation data frame from the same organism as exon.counts (such the
ones produced by get.annotation).
multic a logical value indicating the presence of multiple cores. Defaults to FALSE. Do
not change it if you are not sure whether package multicore has been loaded or
not.
Value

A named list where names represent samples. Each list member is a also a named list where names
correspond to gene ids and members are named vectors. Each vector is named according to the
exons corresponding to each gene and contains the read counts for each exon. This structure is used
for exon filtering and assembling final gene counts in the metaseqr pipeline.

Author(s)

Panagiotis Moulos



20 construct.utr.model

Examples

# Takes some time to run...

data("hg19.exon.data",package="metaseqR")

gene.data <- get.annotation("hg19”,"gene","ensembl")

reduced. gene.data <- reduce.gene.data(hgl19.exon.counts,
gene.data)

multic <- check.parallel(@.4)

gene.model <- construct.gene.model(hg19.exon.counts,

sample.list.hg19,gene.data,multic)

construct.utr.model Assemble a gene model based on 3’ UTR counts for quant-seq data

Description

This function assembles gene models (single genes, not isoforms) based on the input read counts
file (3’ UTRs) and a gene annotation data frame, either from an external file provided by the user,
or with the get.annotation function. The gene. data argument should have a specific format and
for this reason it’s better to use one of the two aforementioned ways to supply it. This function is
intended mostly for internal use but can be used if the requirements are met.

Usage
construct.utr.model(utr.counts, sample.list, gene.data,
multic = FALSE)
Arguments
utr.counts the exon counts data frame produced by reading the exon read counts file.
sample.list the list containing condition names and the samples under each condition.
gene.data an annotation data frame from the same organism as exon.counts (such the
ones produced by get.annotation).
multic a logical value indicating the presence of multiple cores. Defaults to FALSE. Do
not change it if you are not sure whether package multicore has been loaded or
not.
Value

A named list where names represent samples. Each list member is a also a named list where names
correspond to gene ids and members are named vectors. Each vector is named according to the
exons corresponding to each gene and contains the read counts for each exon. This structure is used
for exon filtering and assembling final gene counts in the metaseqr pipeline.

Author(s)

Panagiotis Moulos



diagplot.avg.ftd 21

Examples

# Takes some time to run...

data(”"hgl19.exon.data",package="metaseqR")

gene.data <- get.annotation("hgl19"”,"gene"”,"ensembl"”)

reduced.gene.data <- reduce.gene.data(hg19.exon.counts,
gene.data)

multic <- check.parallel(0.4)

gene.model <- construct.utr.model(hg19.exon.counts,

sample.list.hg19,gene.data,multic)

diagplot.avg.ftd Create average False (or True) Discovery curves

Description

This function creates false (or true) discovery curves using a list containing several outputs from
diagplot.ftd.

Usage
diagplot.avg.ftd(ftdr.obj, output = "x11",
path = NULL, draw = TRUE, ...)
Arguments
ftdr.obj a list with outputs from diagplot. ftd.
output one or more R plotting device to direct the plot result to. Supported mechanisms:
“X-I 1 n (default), llpng"’ ijgﬂ7 "bmp"’ Ilpdfll Or Ilpsll'
path the path to create output files.
draw boolean to determine whether to plot the curves or just return the calculated
values (in cases where the user wants the output for later averaging for example).
Defaults to TRUE (make plots).
further arguments to be passed to plot devices, such as parameter from par.
Value

A named list with two members: the first member (avg. ftdr) contains a list with the means and the
standard deviations of the averaged ftdr.obj and are used to create the plot. The second member
(path) contains the path to the created figure graphic.

Author(s)

Panagiotis Moulos



22 diagplot.boxplot

Examples

p11 <- 0.001*matrix(runif(300),100,3)

p12 <- matrix(runif(300),100,3)

p21 <- 0.001*matrix(runif(300),100,3)

p22 <- matrix(runif(300),100,3)

p31 <- 0.001*matrix(runif(300),100,3)

p32 <- matrix(runif(300),100,3)

p1 <= rbind(p11,p21)

p2 <- rbind(p12,p22)

p3 <- rbind(p31,p32)

rownames (p1) <- rownames(p2) <- rownames(p3) <-
paste("gene"”,1:200,sep="_")

colnames(p1) <- colnames(p2) <- colnames(p3) <-
paste("method”,1:3,sep="_"

truth <- c(rep(1,40),rep(-1,40),rep(0,20),
rep(1,10),rep(2,10),rep(0,80))

names(truth) <- rownames(p1)

ftd.obj.1 <- diagplot.ftd(truth,p1,N=100,draw=FALSE)

ftd.obj.2 <- diagplot.ftd(truth,p2,N=100,draw=FALSE)

ftd.obj.3 <- diagplot.ftd(truth,p3,N=100,draw=FALSE)

ftd.obj <- list(ftd.obj.1,ftd.obj.2,ftd.obj.3)

avg.ftd.obj <- diagplot.avg.ftd(ftd.obj)

diagplot.boxplot Boxplots wrapper for the metaseqR package

Description

A wrapper over the general boxplot function, suitable for matrices produced and processed with the
metaseqr package. Intended for internal use but can be easily used as stand-alone. It can colors
boxes based on group depending on the name argument.

Usage
diagplot.boxplot(mat, name = NULL, log.it = "auto”,
y.lim = "default”, is.norm = FALSE, output = "x11",
path = NULL, alt.names = NULL, ...)
Arguments
mat the count data matrix.
name the names of the samples plotted on the boxdiagplot. If NULL, the function check
the column names of mat. If they are also NULL, sample names are autogener-
ated. If name="none", no sample names are plotted. If name is a list, it should
be the sample.list argument provided to the manin metaseqr function. In that
case, the boxes are colored per group.
log.it whether to log transform the values of mat or not. It can be TRUE, FALSE or

"auto” for auto-detection. Auto-detection log transforms by default so that the
boxplots are smooth and visible.

y.lim custom y-axis limits. Leave the string "default” for default behavior.



diagplot.cor

is.norm

output

path

alt.names

Value

23

a logical indicating whether object contains raw or normalized data. It is not
essential and it serves only plot annotation purposes.

one or more R plotting device to direct the plot result to. Supported mechanisms:
"x11" (default), "png”, "jpg", "bmp”, "pdf", "ps" or "json". The latter is cur-
rently available for the creation of interactive volcano plots only when reporting
the output, through the highcharts javascript library (JSON for boxplots not yet

available).
the path to create output files.

an optional vector of names, e.g. HUGO gene symbols, alternative or comple-
mentary to the unique rownames of mat (which must exist!). It is used only in
JSON output.

further arguments to be passed to plot devices, such as parameter from par.

The filename of the boxplot produced if it’s a file.

Author(s)

Panagiotis Moulos

Examples

# Non-normalized boxplot

require(DESeq)

data.matrix <- counts(makeExampleCountDataSet())
sample.list <- list(A=c("A1","A2"),B=c("B1","B2","B3"))
diagplot.boxplot(data.matrix,sample.list)

# Normalized boxplot

norm.args <- get.defaults("normalization”,"deseq")

object <- normalize.deseq(data.matrix,sample.list,norm.args)
diagplot.boxplot(object,sample.list)

diagplot.cor

Summarized correlation plots

Description

This function uses the read counts matrix to create heatmap or correlogram correlation plots.

Usage

diagplot.cor(mat, type = c("heatmap”, "correlogram”),
output = "x11", path = NULL, ...)



24 diagplot.de.heatmap

Arguments
mat the read counts matrix or data frame.
type create heatmap of correlogram plots.
output one or more R plotting device to direct the plot result to. Supported mechanisms:
”X1 ‘I n (default)’ "pngll’ ”jpg”’ "bmpll’ defﬂ Or Hps"'
path the path to create output files.
further arguments to be passed to plot devices, such as parameter from par.
Value

The filename of the pairwise comparisons plot produced if it’s a file.

Author(s)

Panagiotis Moulos

Examples

require(DESeq)

data.matrix <- counts(makeExampleCountDataSet())
diagplot.cor(data.matrix, type="heatmap")
diagplot.cor(data.matrix, type="correlogram”)

diagplot.de.heatmap Diagnostic heatmap of differentially expressed genes

Description

This function plots a heatmap of the differentially expressed genes produced by the metaseqr work-
flow, useful for quality control, e.g. whether samples belonging to the same group cluster together.

Usage
diagplot.de.heatmap(x, con = NULL, output = "x11",
path = NULL, ...)
Arguments
X the data matrix to create a heatmap for.
con an optional string depicting a name (e.g. the contrast name) to appear in the title
of the volcano plot.
output one or more R plotting device to direct the plot result to. Supported mechanisms:
”X1 -I n (default)’ Hpngll’ ijgll’ llbmpll, de_FH’ llpsll'
path the path to create output files.
further arguments to be passed to plot devices, such as parameter from par.
Value

The filenames of the plots produced in a named list with names the which.plot argument. If
output="x11", no output filenames are produced.



diagplot.edaseq 25

Author(s)

Panagiotis Moulos

Examples

require(DESeq)

data.matrix <- counts(makeExampleCountDataSet())
sample.list <- list(A=c("A1","A2"),B=c("B1","B2","B3"))
contrast <- "A_vs_B"

M <- normalize.edger(data.matrix,sample.list)

p <- stat.edger(M,sample.list,contrast)
diagplot.de.heatmap(data.matrix[p[[1]1<0.05,]1)

diagplot.edaseq Diagnostic plots based on the EDASeq package

Description

A wrapper around the plotting functions availale in the EDASeq normalization Bioconductor pack-
age. For analytical explanation of each plot please see the vignette of the EDASeq package. It is
best to use this function through the main plotting function diagplot.metaseqr.

Usage
diagplot.edaseq(x, sample.list, covar = NULL,
is.norm = FALSE,
which.plot = c("meanvar”, "meandiff"”, "gcbias"”, "lengthbias"”),
output = "x11", path = NULL, ...)
Arguments
X the count data matrix.
sample.list the list containing condition names and the samples under each condition.
covar The covariate to plot counts against. Usually "gc" or "length".
is.norm a logical indicating whether object contains raw or normalized data. It is not
essential and it serves only plot annotation purposes.
which.plot the EDASeq package plot to generate. It can be one or more of "meanvar”,
"meandiff”, "gcbias"” or "lengthbias”. Please refer to the documentation of
the EDASeq package for details on the use of these plots. Thewhich.plot="1engthbias"
case is not covered by EDASeq documentation, however it is similar to the GC-
bias plot when the covariate is the gene length instead of the GC content.
output one or more R plotting device to direct the plot result to. Supported mechanisms:
“X-I -I n (default), Ilpngll’ ijglﬁ’ Ilbmpll’ Ilpd.Fll OI' “pS“.
path the path to create output files.
further arguments to be passed to plot devices, such as parameter from par.
Value

The filenames of the plot produced in a named list with names the which.plot argument. If output="x11",
no output filenames are produced.



26 diagplot.filtered

Author(s)

Panagiotis Moulos

Examples

require(DESeq)

data.matrix <- counts(makeExampleCountDataSet())

sample.list <- list(A=c("A1","A2"),B=c("B1","B2","B3"))
diagplot.edaseq(data.matrix,sample.list,which.plot="meandiff")

diagplot.filtered Diagnostic plot for filtered genes

Description

This function plots a grid of four graphs depicting: in the first row, the numbers of filtered genes
per chromosome in the first column and per biotype in the second column. In the second row, the
percentages of filtered genes per chromosome related to the whole genome in the first columns and
per biotype in the second column.

Usage
diagplot.filtered(x, y, output = "x11", path = NULL, ...)
Arguments
X an annotation data frame like the ones produced by get.annotation. x should
be the filtered annotation according to metaseqR’s filters.
y an annotation data frame like the ones produced by get.annotation. y should
contain the total annotation without the application of any metaseqr filter.
output one or more R plotting device to direct the plot result to. Supported mechanisms:
HX-I -I n (default), Ilpngll’ ijglﬁ’ Ilbmpll’ Updfll OI' “pS".
path the path to create output files.
further arguments to be passed to plot devices, such as parameter from par.
Value

The filenames of the plots produced in a named list with names the which.plot argument. If
output="x11", no output filenames are produced.

Author(s)

Panagiotis Moulos

Examples

y <- get.annotation("mm9"”,"gene")
x <- y[-sample(1:nrow(y),10000),]
diagplot.filtered(x,y)



diagplot.ftd

27

diagplot.ftd

Create False (or True) Positive (or Negative) curves

Description

This function creates false (or true) discovery curves using a matrix of p-values (such a matrix can
be derived for example from the result table of metaseqr by subsetting the table to get the p-values
from several algorithms) given a ground truth vector for differential expression.

Usage

diagplot.ftd(truth, p, type = "fpc”, N = 2000,

Arguments

truth

type

output

path

draw

Value

output = "x11", path = NULL, draw = TRUE, ...)

the ground truth differential expression vector. It should contain only zero and
non-zero elements, with zero denoting non-differentially expressed genes and
non-zero, differentially expressed genes. Such a vector can be obtained for ex-
ample by using the make.sim.data. sd function, which creates simulated RNA-
Seq read counts based on real data. The elements of truth MUST be named
(e.g. each gene’s name).

a p-value matrix whose rows correspond to each element in the truth vector.
If the matrix has a colnames attribute, a legend will be added to the plot using
these names, else a set of column names will be auto-generated. p can also be a
list or a data frame. The p-values MUST be named (e.g. each gene’s name).

what to plot, can be "fpc” for False Positive Curves (default), "tpc"” for True
Positive Curves, "fnc" for False Negative Curves or "tnc"” for True Negative
Curves.

create the curves based on the top (or bottom) N ranked genes (default is 2000)
to be used with type="fpc" or type="tpc".

one or more R plotting device to direct the plot result to. Supported mechanisms:

n on n o n

"x11" (default), "png”, "jpg", "bmp"”, "pdf" or "ps”.
the path to create output files.

boolean to determine whether to plot the curves or just return the calculated
values (in cases where the user wants the output for later averaging for example).
Defaults to TRUE (make plots).

further arguments to be passed to plot devices, such as parameter from par.

A named list with two members: the first member (ftdr) contains the values used to create the plot.
The second member (path) contains the path to the created figure graphic.

Author(s)

Panagiotis Moulos



28 diagplot.mds

Examples

pl <- 0.001*matrix(runif(300),100,3)

p2 <- matrix(runif(300),100,3)

p <= rbind(p1,p2)

rownames(p) <- paste(”gene”,1:200,sep="_")

colnames(p) <- paste(”"method”,1:3,sep="_")

truth <- c(rep(1,40),rep(-1,40),rep(0,20),
rep(1,10),rep(2,10),rep(0,80))

names(truth) <- rownames(p)

ftd.obj <- diagplot.ftd(truth,p,N=100)

diagplot.mds Multi-Dimensinal Scale plots or RNA-Seq samples

Description

Creates a Multi-Dimensional Scale plot for the given samples based on the count data matrix. MDS
plots are very useful for quality control as you can easily see of samples of the same groups are
clustered together based on the whole dataset.

Usage
diagplot.mds(x, sample.list, method = "spearman”,
log.it = TRUE, output = "x11", path = NULL, ...)
Arguments
X the count data matrix.
sample.list the list containing condition names and the samples under each condition.
method which correlation method to use. Same as the method parameter in cor function.
log.it whether to log transform the values of x or not.
output one or more R plotting device to direct the plot result to. Supported mechanisms:
"x11" (default), "png”, "jpg", "bmp”, "pdf", "ps" or "json". The latter is cur-
rently available for the creation of interactive volcano plots only when reporting
the output, through the highcharts javascript library.
path the path to create output files.
further arguments to be passed to plot devices, such as parameter from par.
Value

The filename of the MDS plot produced if it’s a file.

Author(s)

Panagiotis Moulos

Examples

require(DESeq)

data.matrix <- counts(makeExampleCountDataSet())
sample.list <- list(A=c(”A1","A2"),B=c("B1","B2","B3"))
diagplot.mds(data.matrix,sample.list)



diagplot.metaseqr 29

diagplot.metaseqr Diagnostic plots for the metaseqR package

Description

This is the main function for producing sructured quality control and informative graphs base on the
results of the various steps of the metaseqR package. The graphs produced span a variety of issues
like good sample reproducibility (Multi-Dimensional Scaling plot, biotype detection, heatmaps.
diagplot.metaseqr, apart from implementing certain package-specific plots, is a wrapper around
several diagnostic plots present in other RNA-Seq analysis packages such as EDASeq and NOISeq.

Usage

diagplot.metaseqr(object, sample.list, annotation = NULL,

Arguments

object

contrast.list = NULL, p.list = NULL,

thresholds = list(p = 0.05, f = 1),

diagplot.type = c("mds”, "biodetection”, "countsbio”, "saturation”,
"readnoise”, "rnacomp”, "correl”, "pairs"”, "boxplot"”, "gcbias"”,
"lengthbias”, "meandiff"”, "meanvar"”, "deheatmap", "volcano",
"pbiodist”, "filtered”, "venn"),

is.norm = FALSE, output = "x11", path = NULL, ...)

a matrix or a data frame containing count data derived before or after the normal-
ization procedure, filtered or not by the metaseqR’s filters and/or p-value. The
object can be fed to any of the diagplot.metaseqr plotting systems but not
every plot is meaningful. For example, it’s meaningless to create a "biodist”
plot for a count matrix before normalization or statistical testing.

sample.list the list containing condition names and the samples under each condition.

annotation a data frame containing annotation elements for each row in object. Usually,

a subset of the annotation obtained by get.annotation or a subset of possi-
bly embedded annotation with the input counts table. This parameter is optional

n on

and required only when diagplot.type is any of "biodetection”, "countsbio”,

non non

"saturation”, "rnacomp”, "readnoise”, "biodist"”, "gcbias”, "lengthbias”
or "filtered".

contrast.list anamed structured list of contrasts as returned by make.contrast.list or just

the vector of contrasts as defined in the main help page of metaseqr. This pa-
rameter is optional and required only when diagplot. type is any of "deheatmap”,
"volcano"” or "biodist".

p.list a list of p-values for each contrast as obtained from any of the stat.* methods
of the metaseqr package. This parameter is optional and required only when
diagplot.type is any of "deheatmap”, "volcano” or "biodist”.

thresholds a list with the elements "p"” and "f" which are the p-value and the fold change

cutoff when diagplot.type="volcano".

diagplot.type one or more of the diagnostic plots supported in metaseqR package. Many of

these plots require the presence of additional package, something that is checked
while running the main metaseqr function. The supported plots are "mds”,

non non non non non

"biodetection”, "countsbio”, "saturation”, "rnacomp”, "boxplot”, "gcbias",



30

is.norm

output

path

Value

diagplot.metaseqr

n on

"lengthbias”, "meandiff”, "meanvar”, "deheatmap”, "volcano”, "biodist"”,
"filtered”, "readnoise”, "venn”, "correl”, "pairwise”. For a brief de-
scription of these plots please see the main metaseqr help page.

a logical indicating whether object contains raw or normalized data. It is not
essential and it serves only plot annotation purposes.

one or more R plotting device to direct the plot result to. Supported mecha-
nisms: "png”, "jpg"”, "bmp”, "pdf"”, "ps” or "json". The latter is currently
available for the creation of interactive volcano plots only when reporting the
output, through the highcharts javascript library. The default plotting ("x11") is
not supported due to instability in certain devices.

the path to create output files.

further arguments to be passed to plot devices, such as parameter from par.

A named list containing the file names of the produced plots. Each list member is names according
to the selected plotting device and is also a named list, whose names are the plot types. The final
contents are the file names in case the plots are written to a physical location (not meaningful for

"x11").

Note

In order to make the best out of this function, you should generally provide the annotation argument
as most and also the most informative plots depend on this. If you don’t know what is inside your
counts table or how many annotation elements you can provide by embedding it, it’s always best
to set the annotation parameter of the main metaseqr function to "download” to use predefined
annotations that work better with the functions of the whole package.

Author(s)

Panagiotis Moulos

Examples

require(DESeq)

data.matrix <- counts(makeExampleCountDataSet())

sample.list <- list(A=c("A1","A2"),B=c("B1","B2","B3"))

contrast <- "A_vs_B"
diagplot.metaseqr(data.matrix,sample.list,diagplot.type=c("mds", "boxplot”))

norm.args <- get.

defaults(”"normalization”,"deseq")

object <- normalize.deseq(data.matrix,sample.list,norm.args)
diagplot.metaseqr(object,sample.list,diagplot.type="boxplot")

## More

#p <- stat.deseq(object,sample.list)
#diagplot.metaseqr(object,sample.list,contrast.list=contrast,p.list=p,
# diagplot.type="volcano")



diagplot.noiseq

31

diagplot.noiseq

Diagnostic plots based on the NOISeq package

Description

A wrapper around the plotting functions availale in the NOISeq Bioconductor package. For analyt-
ical explanation of each plot please see the vignette of the NOISeq package. It is best to use this
function through the main plotting function diagplot.metaseqr.

Usage
diagplot.noiseq(x, sample.list, covars,
which.plot = c("biodetection”, "countsbio”, "saturation”, "rnacomp”,
"readnoise”, "biodist"),
output = "x11",
biodist.opts = list(p = NULL, pcut = NULL, name = NULL),
path = NULL, is.norm = FALSE, ...)
Arguments
X the count data matrix.

sample.list

covars

which.plot

biodist.opts

output

path

is.norm

Value

the list containing condition names and the samples under each condition.

a list (whose annotation elements are ideally a subset of an annotation data frame
produced by get.annotation) with the following members: data (the data ma-
trix), length (gene length), gc (the gene gc_content), chromosome (a data frame
with chromosome name and co-ordinates), factors (a factor with the experimen-
tal condition names replicated by the number of samples in each experimental
condition) and biotype (each gene’s biotype as depicted in Ensembl-like anno-
tations).

the NOISeq package plot to generate. It can be one or more of "biodetection”,
"countsbio”, "saturation”, "rnacomp”, "readnoise” or "biodist". Please
refer to the documentation of the EDASeq package for details on the use of these
plots. The which.plot="saturation" case is modified to be more informative

by producing two kinds of plots. See diagplot.noiseq.saturation.

a list with the following members: p (a vector of p-values, e.g. the p-values of
a contrast), pcut (a unique number depicting a p-value cutoff, required for the
"biodist"” case), name (a name for the "biodist” plot, e.g. the name of the
contrast.

one or more R plotting device to direct the plot result to. Supported mechanisms:
IIX-I -I n (default)’ Ilpngll’ lljpgll’ Ilbmpll’ Ilpdf‘ll ()I' “pS".

the path to create output files.

a logical indicating whether object contains raw or normalized data. It is not
essential and it serves only plot annotation purposes.

further arguments to be passed to plot devices, such as parameter from par.

The filenames of the plots produced in a named list with names the which.plot argument. If
output="x11", no output filenames are produced.



32 diagplot.noiseq.saturation

Note

Please note that in case of "biodist” plots, the behavior of the function is unstable, mostly due
to the very specific inputs this plotting function accepts in the NOISeq package. We have tried to
predict unstable behavior and avoid exceptions through the use of tryCatch but it’s still possible that
you might run onto an error.

Author(s)

Panagiotis Moulos

Examples

require(DESeq)
data.matrix <- counts(makeExampleCountDataSet())
sample.list <- list(A=c("A1","A2"),B=c("B1","B2","B3"))
lengths <- round(1000*runif(nrow(data.matrix)))
starts <- round(1000*runif(nrow(data.matrix)))
ends <- starts + lengths
covars <- list(
data=data.matrix,
length=1lengths,
gc=runif(nrow(data.matrix)),
chromosome=data. frame(
chromosome=c(rep(”chr1”,nrow(data.matrix)/2),
rep("chr2”,nrow(data.matrix)/2)),
start=starts,
end=ends
),
factors=data.frame(class=as.class.vector(sample.list)),
biotype=c(rep("protein_coding”,nrow(data.matrix)/2),rep("ncRNA",
nrow(data.matrix)/2))
)
p <- runif(nrow(data.matrix))
diagplot.noiseq(data.matrix,sample.list,covars=covars,
biodist.opts=1list(p=p,pcut=0.1,name="A_vs_B"))

diagplot.noiseq.saturation
Simpler implementation of saturation plots inspired from NOISeq
package

Description

Helper function for diagplot.noiseq to plot feature detection saturation as presented in the NOISeq
package vignette. It has two main outputs: a set of figures, one for each input sample depicting the
saturation for each biotype and one single multiplot which depicts the saturation of all samples
for each biotype. It expands the saturation plots of NOISeq by allowing more samples to be ex-
amined in a simpler way. Don’t use this function directly. Use either diagplot.metaseqr or
diagplot.noiseq.

Usage

diagplot.noiseq.saturation(x, o, tb, path = NULL)



diagplot.pairs 33

Arguments
X the count data matrix.
) one or more R plotting device to direct the plot result to. Supported mechanisms:
“X-I -I n (default), llpngll’ ijglﬁ’ llbmpll’ Ilpd.FIl OI' Ilpsll.
tb the vector of biotypes, one for each row of x.
path the path to create output files.
Value

The filenames of the plots produced in a named list with names the which.plot argument. If
output="x11", no output filenames are produced.

Author(s)

Panagiotis Moulos

diagplot.pairs Massive X-Y, M-D correlation plots

Description

This function uses the read counts matrix to create pairwise correlation plots. The upper diagonal
of the final image contains simple scatterplots of each sample against each other (log2 scale) while
the lower diagonal contains mean-difference plots for the same samples (log2 scale). This type of
diagnostic plot may not be interpretable for more than 10 samples.

Usage
diagplot.pairs(x, output = "x11", path = NULL, ...)
Arguments
X the read counts matrix or data frame.
output one or more R plotting device to direct the plot result to. Supported mechanisms:
”X1 1 n (default)’ Hpngll’ ”jpgﬂ, Hbmpll, de,f_‘ll Or Hpsll'
path the path to create output files.
further arguments to be passed to plot devices, such as parameter from par.
Value

The filename of the pairwise comparisons plot produced if it’s a file.

Author(s)

Panagiotis Moulos

Examples

require(DESeq)
data.matrix <- counts(makeExampleCountDataSet())
diagplot.pairs(data.matrix)



34 diagplot.roc

diagplot.roc Create basic ROC curves

Description

This function creates basic ROC curves using a matrix of p-values (such a matrix can be derived for
example from the result table of metaseqr by subsetting the table to get the p-values from several
algorithms) given a ground truth vector for differential expression and a significance level.

Usage
diagplot.roc(truth, p, sig = 0.05, x = "fpr",
y = "tpr"”, output = "x11", path = NULL,
draw = TRUE, ...)
Arguments

truth the ground truth differential expression vector. It should contain only zero and
non-zero elements, with zero denoting non-differentially expressed genes and
non-zero, differentially expressed genes. Such a vector can be obtained for ex-
ample by using the make.sim.data. sd function, which creates simulated RNA-
Seq read counts based on real data.

p a p-value matrix whose rows correspond to each element in the truth vector.
If the matrix has a colnames attribute, a legend will be added to the plot using
these names, else a set of column names will be auto-generated. p can also be a
list or a data frame.

sig a significance level (0 < sig <=1).

X what to plot on x-axis, can be one of "fpr”, "fnr", "tpr”, "tnr" for False
Positive Rate, False Negative Rate, True Positive Rate and True Negative Rate
respectively.

y what to plot on y-axis, same as x above.

output one or more R plotting device to direct the plot result to. Supported mechanisms:
“X-I 1 n (default), llpngll’ ijg“’ Hbmpll’ Ilpdfll Or llpsll'

path the path to create output files.

draw boolean to determine whether to plot the curves or just return the calculated
values (in cases where the user wants the output for later averaging for example).
Defaults to TRUE (make plots).
further arguments to be passed to plot devices, such as parameter from par.

Value

A named list with two members. The first member is a list containing the ROC statistics: TP (True
Postives), FP (False Positives), FN (False Negatives), TN (True Negatives), FPR (False Positive Rate),
FNR (False Negative Rate), TPR (True Positive Rate), TNR (True Negative Rate), AUC (Area Under
the Curve). The second is the path to the created figure graphic.

Author(s)

Panagiotis Moulos



diagplot.venn 35

Examples

pl <- 0.001*matrix(runif(300),100,3)

p2 <- matrix(runif(300),100,3)

p <= rbind(p1,p2)

rownames(p) <- paste(”gene”,1:200,sep="_")

colnames(p) <- paste(”"method”,1:3,sep="_")

truth <- c(rep(1,40),rep(-1,40),rep(0,20),rep(1,10),
rep(2,10),rep(0,80))

names(truth) <- rownames(p)

roc.obj <- diagplot.roc(truth,p)

diagplot.venn Venn diagrams when performing meta-analysis

Description

This function uses the R package VennDiagram and plots an up to 5-way Venn diagram depicting
the common and specific to each statistical algorithm genes, for each contrast. Mostly for internal
use because of its main argument which is difficult to construct, but can be used independently if
the user grasps the logic.

Usage

diagplot.venn(pmat, fcmat = NULL, pcut = 0.05,
fcut = 0.5, direction = c("dereg”, "up”, "down"),
nam = as.character(round(1000 * runif(1))),
output = "x11", path = NULL, alt.names = NULL, ...)

Arguments

pmat a matrix with p-values corresponding to the application of each statistical algo-
rithm. The p-value matrix must have the colnames attribute and the colnames
should correspond to the name of the algorithm used to fill the specific column

n on n on

(e.g. if "statistics”=c("deseq”, "edger”, "nbpseq") then colnames(pmat)

n on n on

<- c("deseq", "edger","nbpseq”).

fcmat an optional matrix with fold changes corresponding to the application of each
statistical algorithm. The fold change matrix must have the colnames attribute
and the colnames should correspond to the name of the algorithm used to fill the
specific column (see the parameter pmat).

pcut if fcmat is supplied, an absolute fold change cutoff to be applied to fcmat to
determine the differentially expressed genes for each algorithm.

fcut a p-value cutoff for statistical significance. Defaults to 0. 05.

direction if fcmat is supplied, a keyword to denote which genes to draw in the Venn dia-
grams with respect to their direction of regulation. It can be one of "dereg" for
the total of regulated genes, where abs(fcmat[,n])>=fcut (default), "up” for
the up-regulated genes where fcmat[,n]>=fcut or "down" for the up-regulated
genes where fcmat[,n]<=-fcut.

nam a name to be appended to the output graphics file (if "output” is not "x11").

output one or more R plotting device to direct the plot result to. Supported mechanisms:

non

nX-I -I n (default), npngn’ ”jpg“, Hbmp , pd.Fu or “pS".



36

path

alt.names

Value

diagplot.volcano

the path to create output files. If "path” is not NULL, a file with the intersections
in the Venn diagrams will be produced and written in "path”.

an optional named vector of names, e.g. HUGO gene symbols, alternative or
complementary to the unique gene names which are the rownames of pmat. The
names of the vector must be the rownames of pmat.

further arguments to be passed to plot devices, such as parameter from par.

The filenames of the plots produced in a named list with names the which.plot argument. If
output="x11", no output filenames are produced.

Author(s)

Panagiotis Moulos

Examples

require(VennDiagram)
pl <- 0.01*matrix(runif(300),100,3)
p2 <- matrix(runif(300),100,3)

p <- rbind(p1,p2)

rownames(p) <- paste(”gene",1:200,sep="_")
colnames(p) <- paste(”"method”,1:3,sep="_")
venn.contents <- diagplot.venn(p)

diagplot.volcano

(Interactive) volcano plots of differentially expressed genes

Description

This function plots a volcano plot or returns a JSON string which is used to render aninteractive in

case of HTML reporting.
Usage
diagplot.volcano(f, p, con = NULL, fcut = 1, pcut = 0.05,
alt.names = NULL, output = "x11", path = NULL, ...)
Arguments
f the fold changes which are to be plotted on the x-axis.
p the p-values whose -log10 transformation is going to be plotted on the y-axis.
con an optional string depicting a name (e.g. the contrast name) to appear in the title
of the volcano diagplot.
fcut a fold change cutoff so as to draw two vertical lines indicating the cutoff thresh-
old for biological significance.
pcut a p-value cutoff so as to draw a horizontal line indicating the cutoff threshold

for statistical significance.



disp

alt.names

output

path

Value

37

an optional vector of names, e.g. HUGO gene symbols, alternative or comple-
mentary to the unique names of f or p (one of them must be named!). It is used
only in JSON output.

one or more R plotting device to direct the plot result to. Supported mechanisms:
"x11" (default), "png"”, "jpg", "bmp", "pdf", "ps" or "json". The latter is cur-
rently available for the creation of interactive volcano plots only when reporting
the output, through the highcharts javascript library.

the path to create output files.

further arguments to be passed to plot devices, such as parameter from par.

The filenames of the plots produced in a named list with names the which.plot argument. If
output="x11", no output filenames are produced.

Author(s)

Panagiotis Moulos

Examples

require(DESeq)

data.matrix <- counts(makeExampleCountDataSet())
sample.list <- list(A=c("A1","A2"),B=c("B1","B2","B3"))
contrast <- "A_vs_B"

M <- normalize.edger(data.matrix,sample.list)

p <- stat.edger(M,sample.list,contrast)

ma <- apply(M[,sample.list$A],1,mean)

mb <- apply(M[,sample.list$B],1,mean)

f <- log2(ifelse(mb==0,1,mb)/ifelse(ma==0,1,ma))
diagplot.volcano(f,p[[1]],con=contrast)

#j <- diagplot.volcano(f,p[[1]],con=contrast,output="json")

disp

Message displayer

Description

Displays a message during execution of the several functions. Internal use.

Usage
disp(...)

Arguments

Author(s)

Panagiotis Moulos

a vector of elements that compose the display message.



38 downsample.counts

Examples
i<-1
disp("Now running iteration ",i,"”...")
downsample.counts Downsample read counts
Description

This function downsamples the library sizes of a read counts table to the lowest library size, accord-
ing to the methdology used in (Soneson and Delorenzi, BMC Bioinformatics, 2013).

Usage
downsample.counts(counts, seed=42)
Arguments
counts the read counts table which is subjected to downsampling.
seed random seed for reproducible downsampling.
Value

The downsampled counts matrix.

Author(s)

Panagiotis Moulos

Examples

## Dowload locally the file "bottomly_count_table.txt” from

## the ReCount database
#download.file(paste("http://bowtie-bio.sourceforge.net/",

# "recount/countTables/bottomly_count_table.txt",sep=""),

# destfile="~/bottomly_count_table.txt")

#M <- as.matrix(read.delim(”~/bottomly_count_table.txt"”,row.names=1))
#D <- downsample.counts(M)



estimate.aufc.weights 39

estimate.aufc.weights Estimate AUFC weights

Description

This function automatically estimates weights for the "weight" and "dperm.weight” options of
metaseqR for combining p-values from multiple statistical tests. It creates simulated dataset based
on real data and then performs statistical analysis with metaseqR several times in order to derive
False Discovery Curves. Then, the average areas under the false discovery curves are used to
construct weights for each algorithm, according to its performance when using simulated data.

Usage
estimate.aufc.weights(counts, normalization,
statistics, nsim = 10, N = 10000,
samples = c(3, 3), ndeg = c(500, 500),
top = 500, model.org = "mm9”, fc.basis=1.5,
seed = NULL, draw.fpc = FALSE, multic = FALSE,
)
Arguments
counts the real raw counts table from which the simulation parameters will be esti-

mated. It must not be normalized and must contain only integer counts, without
any other annotation elements and unique gene identifiers as the rownames at-
tribute.

normalization same as normalization in metaseqr.

statistics same as statistics in metaseqr.

nsim the number of simulations to perform to estimate the weights. It default to 10.
N the number of genes to produce. See make.sim.data.sd.

samples a vector with 2 integers, which are the number of samples for each condition

(two conditions currently supported).

ndeg a vector with 2 integers, which are the number of differentially expressed genes
to be produced. The first element is the number of up-regulated genes while the
second is the number of down-regulated genes.

fc.basis the minimum fold-change for deregulation.

top the top top best ranked (according to p-value) to use, to calculate area under the
false discovery curve.

model.org the organism from which the data are derived. It must be one of metaseqr
supported organisms.

seed a list of seed for reproducible simulations. Defaults to NULL.

draw. fpc draw the averaged false discovery curves? Default to FALSE.

multic whether to run in parallel (if package parallel is present or not.

Further arguments to be passed to estimate.sim.params.

Value

A vector of weights to be used in metaseqr with the weights option.



40

Author(s)

Panagiotis Moulos

Examples

estimate.sim.params

data("mm9.gene.data",package="metaseqR")

multic <- check.parallel(0.8)

weights <- estimate.aufc.weights(
counts=as.matrix(mm9.gene.counts[,9:12]),
normalization="edaseq",

non

statistics=c("deseq”, "edger"),

nsim=3,N=100,

ndeg=c(10,10),top=10,model.org="mm9",

seed=10,multic=multic,libsize.gt=1e+5

estimate.sim.params Estimate negative binomial parameters from real data

Description

This function reads a read counts table containing real RNA-Seq data (preferebly with more than
20 samples so as to get as much accurate as possible estimations) and calculates a population of
count means and dispersion parameters which can be used to simulate an RNA-Seq dataset with
synthetic genes by drawing from a negative binomial distribution. This function works in the same
way as described in (Soneson and Delorenzi, BMC Bioinformatics, 2013) and (Robles et al., BMC

Genomics, 2012).

Usage

estimate.sim.params(real.counts, libsize.gt = 3e+6,
rowmeans.gt = 5,eps = le-11,
restrict.cores = 0.1, seed = 42, draw = FALSE)

Arguments

real.counts

libsize.gt
rowmeans.gt

eps
restrict.cores
seed
draw

a text tab-delimited file with real RNA-Seq data. The file should strictly contain
a unique gene name (e.g. Ensembl accession) in the first column and all other
columns should contain read counts for each gene. Each column must be named
with a unique sample identifier. See examples in the ReCount database http:
//bowtie-bio.sourceforge.net/recount/.

a library size below which samples are excluded from parameter estimation (de-
fault: 3000000).

a row means (mean counts over samples for each gene) below which genes are
excluded from parameter estimation (default: 5).

the tolerance for the convergence of optimize function. Defaults to le-11.
in case of parallel optimization, the fraction of the available cores to use.
a seed to use with random number generation for reproducibility.

boolean to determine whether to plot the estimated simulation parameters (mean
and dispersion) or not. Defaults to FALSE (do not draw a mean-dispersion scat-
terplot).


http://bowtie-bio.sourceforge.net/recount/
http://bowtie-bio.sourceforge.net/recount/

filter.exons 41

Value

A named list with two members: mu.hat which contains negative binomial mean estimates and
phi.hat which contains dispersion estimates.

Author(s)

Panagiotis Moulos

Examples

# Dowload locally the file "bottomly_read_counts.txt” from

# the ReCount database

download.file(paste("http://bowtie-bio.sourceforge.net/",
"recount/countTables/bottomly_count_table.txt",sep=""),
destfile="~/bottomly_count_table.txt")

# Estimate simulation parameters

par.list <- estimate.sim.params("~/bottomly_count_table.txt")

filter.exons Filter gene expression based on exon counts

Description

This function performs the gene expression filtering based on exon read counts and a set of exon
filter rules. For more details see the main help pages of metaseqr.

Usage
filter.exons(the.counts, gene.data, sample.list,
exon.filters, restrict.cores = 0.8)
Arguments
the.counts a named list created with the construct.gene.model function. See its help
page for details.
gene.data an annotation data frame usually obtained with get.annotation containing the
unique gene accession identifiers.
sample.list the list containing condition names and the samples under each condition.

exon.filters  anamed list with exon filters and their parameters. See the main help page of
metaseqr for details.

restrict.cores in case of parallel execution of several subfunctions, the fraction of the available
cores to use. In some cases if all available cores are used (restrict.cores=1
and the system does not have sufficient RAM, the running machine might sig-
nificantly slow down.



42 filter.genes

Value

a named list with two members. The first member (result is a named list whose names are the
exon filter names and its members are the filtered rownames of gene.data. The second member is
a matrix of binary flags (0 for non-filtered, 1 for filtered) for each gene. The rownames of the flag
matrix correspond to gene ids.

Author(s)

Panagiotis Moulos

Examples

data(”"hgl19.exon.data",package="metaseqR")

exon.counts <- hg19.exon.counts

gene.data <- get.annotation("hg19","gene")

sample.list <- sample.list.hgl9

exon.filters <- get.defaults("exon.filter")

the.counts <- construct.gene.model(exon.counts,sample.list,
gene.data)

filter.results <- filter.exons(the.counts,gene.data,
sample.list,exon.filters)

filter.genes Filter gene expression based on gene counts

Description

This function performs the gene expression filtering based on gene read counts and a set of gene
filter rules. For more details see the main help pages of metaseqr.

Usage

filter.genes(gene.counts, gene.data, gene.filters,
sample.list)

Arguments

gene.counts a matrix of gene counts, preferably after the normalization procedure.

gene.data an annotation data frame usually obtained with get.annotation containing the
unique gene accession identifiers.

gene.filters  anamed list with gene filters and their parameters. See the main help page of
metaseqr for details.

sample.list the list containing condition names and the samples under each condition.

Value

a named list with three members. The first member (result is a named list whose names are the
gene filter names and its members are the filtered rownames of gene.data. The second member
(cutoff is a named list whose names are the gene filter names and its members are the cutoff values
corresponding to each filter. The third member is a matrix of binary flags (0 for non-filtered, 1 for
filtered) for each gene. The rownames of the flag matrix correspond to gene ids.



filter.high

Author(s)

Panagiotis Moulos

Examples

data("mm9.gene.data"”,package="metaseqR")

gene.counts <- mm9.gene.counts

sample.list <- sample.list.mm9

gene.counts <- normalize.edger(as.matrix(gene.counts[,9:12]),
sample.list)

gene.data <- get.annotation("mm9”,"gene")

gene.filters <- get.defaults("gene.filter”,"mm9")

filter.results <- filter.genes(gene.counts,gene.data,
gene.filters,sample.list)

43

filter.high Filtering helper

Description

High score filtering function. Internal use.

Usage
filter.high(x, f)
Arguments
X a data numeric matrix.
f a threshold.
Author(s)

Panagiotis Moulos

Examples

data("mm9.gene.data",package="metaseqR")
counts <- as.matrix(mm9.gene.counts[,9:12])
f <- filter.low(counts,median(counts))



44 fisher.method

filter.low Filtering helper

Description

Low score filtering function. Internal use.

Usage
filter.low(x, f)
Arguments
X a data numeric matrix.
f a threshold.
Author(s)

Panagiotis Moulos

Examples

data(”"mm9.gene.data"”,package="metaseqR")
counts <- as.matrix(mm9.gene.counts[,9:12])
f <- filter.low(counts,median(counts))

fisher.method Perform Fisher’s Method for combining p-values

Description

Function for combining p-values by performing Fisher’s method. The approach as described by
Fisher’s combines p-values to a statistic

k
S = —QZlogp

, which follows a x?2 distribution with 2k degrees of freedom.

Usage

fisher.method(pvals, method = c("fisher"”), p.corr = c("bonferroni”,
"BH", "none"), zero.sub = 1e-05, na.rm = FALSE, mc.cores=NULL)



fisher.method 45

Arguments
pvals A matrix or data.frame containing the p-values from the single tests
method A string indicating how to combine the p-values for deriving a sumary p-value.
Currently only the classical approach described by Fisher is implemented.
p.corr Method for correcting the summary p-values. BH: Benjamini-Hochberg (de-
fault); Bonferroni’s method or no (’none’) correction are currently supported.
zero.sub Replacement for p-values of 0
na.rm A flag indicating whether NA values should be removed from the analysis.
mc.cores Currently ignored
Details

As log (@) results in Inf we replace p-values of 0 by default with a small float. If you want to keep
them as 0 you have to provide 0 as a parameter in zero. sub.

Note that only p-values between 0 and 1 are allowed to be passed to this method.

Value

This method returns a data.frame containing the following columns

S The statistic
num.p The number of p-values used to calculate S
p.value The overall p-value
p.adj The adjusted p-value
Note

This function was copied from the CRAN package MADAM which is no longer maintained. Recog-
nition goes to the original author(s) below.

Author(s)

Karl Kugler <karl @eigenlab.net>

References

Fisher, R.A. (1925). Statistical Methods for Research Workers. Oliver and Boyd (Edinburgh).
Moreau, Y.et al. (2003). Comparison and meta-analysis of microarray data: from the bench to the
computer desk. Trends in Genetics, 19(10), 570-577.

See Also

fisher.method.perm

Examples

set.seed(123)

pp <- matrix(c(runif(20),c(0.001,0.02,0.03,0.001)), ncol=4)
pp[2,3] <- NA

fisher.method(pp) #returns one NA row

fisher.method(pp, na.rm=TRUE) #ignore NA entry in that row



46 fisher.method.perm

fisher.method.perm Derive a p-value for a summary statistic of p-values by permutation

Description

Given a set of p-values and a summary statistic S:

S = —22:10gp7

a p-value for this statistic can be derived by randomly generating summary statistics [Rhodes,2002].
Therefore, a p-value is randomly sampled from each contributing study and a random statistic is
calculated. The fraction of random statistics greater or equal to S then gives the p-value.

Usage

fisher.method.perm(pvals, p.corr = c("bonferroni”, "BH", "none"),
zero.sub = 1e-05, B = 10000, mc.cores = NULL, blinker = 1000)

Arguments
pvals A matrix or data.frame containing the p-values from the single tests
p.corr Method for correcting the summary p-values. BH: Benjamini-Hochberg (de-
fault); Bonferroni’s method or no (’none’) correction are currently supported.
zero.sub Replacement for p-values of 0
B Number of random statistics
mc.cores Number of cores used for calculating the permutations. If not NULL the multicore
package is used for parallelization with the given number of cores.
blinker An indicator that prints "=" after each blinker rows of pvals in order to follow
the progress.
Details

At the moment this function only supports situations were all passed p-values are not NA. We plan
on extending this functionality in upcoming versions.

For large data sets and/or large B we strongly recommend using the mc. cores option as the calcu-
lation will otherwise be computationally demanding. This will call the mclapply function from the
multicore package, which you will have to install in that case.

n_nmn

By default a blinker (a small string "=") is shown after each 1000 rows that were computed. This
function allows you to assess the progress of the analysis. If you don’t want to see the blinker set it
to NA.

As log(0) results in Inf we replace p-values of 0 by default with a small float. If you want to keep
them as 0 you have to provide 0 as a parameter in zero. sub.

Note that only p-values between 0 and 1 are allowed to be passed to this method.



fisher.sum 47

Value

This method returns a data.frame containing the following columns

S The statistic
num.p The number of p-values used to calculate S
p.value The overall p-value
p.adj The adjusted p-value
Note

This function was copied from the CRAN package MADAM which is no longer maintained. Recog-
nition goes to the original author(s) below.
Author(s)

Karl Kugler <karl @eigenlab.net>

References

Rhodes, D. R., (2002). Meta-analysis of microarrays: interstudy alidation of gene expression pro-
files reveals pathway dysregulation in prostate cancer. Cancer research, 62(15), 4427-33.

See Also

fisher.sum, fisher.method

Examples

set.seed(123)
pp <- matrix(c(runif(20),c(0.001,0.02,0.03,0.001)), ncol=4)
fisher.method.perm(pp, B=10, blinker=1)
## Not run:
fisher.method.perm(pp, B=10000, mc.cores=3, blinker=1) #use multicore

## End(Not run)

fisher.sum A function to calculate Fisher’s sum for a set of p-values

Description

This method combines a set of p-values using Fisher’s method:

S:—ZZlogp

Usage

fisher.sum(p, zero.sub=0.00001, na.rm=FALSE)



48 get.annotation

Arguments

p A vector of p-values

zero.sub Replacement for O values.

na.rm Should NA values be removed before calculating the sum
Details

As log (@) results in Inf we replace p-values of 0 by default with a small float. If you want to keep
them as O you have to provide 0 as a parameter in zero. sub.

Note that only p-values between 0 and 1 are allowed to be passed to this method.

Value

Fisher’s sum as described above.

Note

This function was copied from the CRAN package MADAM which is no longer maintained. Recog-
nition goes to the original author(s) below.

Author(s)

Karl Kugler <karl @eigenlab.net>

References

Fisher, R.A. (1925). Statistical Methods for Research Workers. Oliver and Boyd (Edinburgh).

See Also

fisher.method

Examples

fisher.sum(c(0.2,0.05,0.05))
fisher.sum(c(0.2,0.05,0.05, NA), na.rm=TRUE)

get.annotation Annotation downloader

Description

This function connects to the EBI’s Biomart service using the package biomaRt and downloads
annotation elements (gene co-ordinates, exon co-ordinates, gene identifications, biotypes etc.) for
each of the supported organisms. See the help page of metaseqr for a list of supported organisms.
The function downloads annotation for an organism genes or exons.

Usage

get.annotation(org, type, refdb="ensembl”,
multic=FALSE)



get.arg 49

Arguments
org the organism for which to download annotation.
type either "gene" or "exon".
refdb the online source to use to fetch annotation. It can be "ensembl” (default),

"ucsc” or "refseq”. In the later two cases, an SQL connection is opened with
the UCSC public databases.

multic a logical value indicating the presence of multiple cores. Defaults to FALSE. Do
not change it if you are not sure whether package parallel has been loaded or not.
It is used in the case of type="exon" to process the return value of the query to
the UCSC Genome Browser database.

Value

A data frame with the canonical (not isoforms!) genes or exons of the requested organism. When
type="genes", the data frame has the following columns: chromosome, start, end, gene_id, gc_content,
strand, gene_name, biotype. When type="exon" the data frame has the following columns: chro-
mosome, start, end, exon_id, gene_id, strand, gene_name, biotype. The gene_id and exon_id cor-
respond to Ensembl gene and exon accessions respectively. The gene_name corresponds to HUGO
nomenclature gene names.

Note

The data frame that is returned contains only "canonical" chromosomes for each organism. It does
not contain haplotypes or random locations and does not contain chromosome M.

Author(s)

Panagiotis Moulos
Examples

non

hg19.genes <- get.annotation("hgl19"”,"gene","ensembl")

non

mm9.exons <- get.annotation("mm9","exon”,"ucsc")

get.arg Argument getter

Description

Get argument(s) from a list of arguments, e.g. normalization arguments.

Usage
get.arg(arg.list, arg.name)
Arguments
arg.list the initial list of a method’s (e.g. normalization) arguments. Can be created with

the get.defaults function.
arg.name the argument name inside the argument list to fetch its value.



50 get.biotypes

Value

The argument sub-list.

Author(s)

Panagiotis Moulos

Examples

non

norm.list <- get.defaults(”normalization”,"egder")
a <- get.arg(norm.list,c("main.method”,"logratioTrim"))

get.biotypes Biotype converter

Description

Returns biotypes as character vector. Internal use.

Usage
get.biotypes(a)
Arguments
a the annotation data frame (output of get.annotation).
Value

A character vector of biotypes.

Author(s)

Panagiotis Moulos

Examples

hg18.genes <- get.annotation("hgl18","gene")
hg18.bt <- get.biotypes(hgl8.genes)



get.bs.organism 51

get.bs.organism Return a proper formatted BSgenome organism name

Description

Returns a properly formatted BSgenome package name according to metaseqR’s supported organ-
ism. Internal use.

Usage
get.bs.organism(org)
Arguments
org one of metaseqR supported organisms.
Value

A proper BSgenome package name.

Author(s)

Panagiotis Moulos

Examples

bs.name <- get.bs.organism("hg18")

get.dataset Annotation downloader helper

Description

Returns a dataset (gene or exon) identifier for each organism recognized by the Biomart service for
Ensembl. Internal use.

Usage
get.dataset(org)
Arguments
org the organism for which to return the identifier.
Value

A string with the dataset identifier.



52 get.defaults

Author(s)

Panagiotis Moulos

Examples

dm3.id <- get.dataset("dm3")

get.defaults Default parameters for several metaseqr functions

Description

This function returns a list with the default settings for each filtering, statistical and normalization
algorithm included in the metaseqR package. See the documentation of the main function and the
documentation of each statistical and normalization method for details.

Usage
get.defaults(what, method = NULL)
Arguments
what a keyword determining the procedure for which to fetch the default settings ac-
cording to method parameter. It can be one of "normalization”, "statistics”,
"gene.filter"”, "exon.filter"” or "biotype.filter”.
method the supported algorithm included in metaseqR for which to fetch the default set-
tings. When what is "normalization”, method is one of "edaseq”, "deseq”,
"edger"”, "noiseq"” or "nbpseq”. When what is "statistics”, method is
one of "deseq”, "edger"”, "noiseq”, "bayseq”, "limma"” or "nbpseq”. When
methodis "biotype.filter”, what is the input organism (see the main metaseqr
help page for a list of supported organisms).
Value

A list with default setting that can be used directly in the call of metaseqr.

Author(s)

Panagiotis Moulos

Examples

non

norm.args.edaseq <- get.defaults(”normalization”,"edaseq")

non

stat.args.edger <- get.defaults("statistics”,"edger")



get.ensembl.annotation 53

get.ensembl.annotation
Ensembl annotation downloader

Description

This function connects to the EBI’s Biomart service using the package biomaRt and downloads
annotation elements (gene co-ordinates, exon co-ordinates, gene identifications, biotypes etc.) for
each of the supported organisms. See the help page of metaseqr for a list of supported organisms.
The function downloads annotation for an organism genes or exons.

Usage
get.ensembl.annotation(org, type)
Arguments
org the organism for which to download annotation.
type either "gene" or "exon".
Value

A data frame with the canonical (not isoforms!) genes or exons of the requested organism. When
type="genes", the data frame has the following columns: chromosome, start, end, gene_id, gc_content,
strand, gene_name, biotype. When type="exon" the data frame has the following columns: chro-
mosome, start, end, exon_id, gene_id, strand, gene_name, biotype. The gene_id and exon_id cor-
respond to Ensembl gene and exon accessions respectively. The gene_name corresponds to HUGO
nomenclature gene names.

Note

The data frame that is returned contains only "canonical”" chromosomes for each organism. It does
not contain haplotypes or random locations and does not contain chromosome M.

Author(s)

Panagiotis Moulos

Examples

hg19.genes <- get.ensembl.annotation("hg19"”,"gene")
mm9.exons <- get.ensembl.annotation(”"mm9"”,"exon")



54 get.gc.content

get.exon.attributes Annotation downloader helper

Description

Returns a vector of genomic annotation attributes which are used by the biomaRt package in order
to fetch the exon annotation for each organism. It has no parameters. Internal use.

Usage
get.exon.attributes(org)
Arguments
org one of the supported organisms.
Value

A character vector of Ensembl exon attributes.

Author(s)

Panagiotis Moulos

Examples

exon.attr <- get.exon.attributes(”"mm9")

get.gc.content Return a named vector of GC-content for each genomic region

Description

Returns a named numeric vector (names are the genomic region names, e.g. genes) given a data
frame which can be converted to a GRanges object (e.g. it has at least chromosome, start, end
fields). This function works best when the input annotation data frame has been retrieved using one
of the SQL queries generated from get.ucsc.query, used in get.ucsc.annotation.

Usage
get.gc.content(ann, org)
Arguments
ann a data frame which can be converted to a GRanges object, that means it has at
least the chromosome, start, end fields. Preferably, the output of 1ink{get.ucsc.annotation}.
org one of metaseqR supported organisms.
Value

A named numeric vector.



get.gene.attributes 55

Author(s)

Panagiotis Moulos

Examples

non

ann <- get.ucsc.annotation("mm9","gene", "ucsc")
gc <- get.gc.content(ann,"mm9")

get.gene.attributes Annotation downloader helper

Description

Returns a vector of genomic annotation attributes which are used by the biomaRt package in order
to fetch the gene annotation for each organism. It has no parameters. Internal use.

Usage
get.gene.attributes(org)
Arguments
org one of the supported organisms.
Value

A character vector of Ensembl gene attributes.

Author(s)

Panagiotis Moulos

Examples

gene.attr <- get.gene.attributes(”mm9")



56 get.preset.opts

get.host Annotation downloader helper

Description

Returns the appropriate Ensembl host address to get different versions of annotation from. Internal
use.

Usage

get.host(org)

Arguments

org the organism for which to return the host address.

Value

A string with the host address.

Author(s)

Panagiotis Moulos

Examples

mm9.hist <- get.host("mm9")

get.preset.opts Return several analysis options given an analysis preset

Description

This is a helper function which returns a set of metaseqr pipeline options, grouped together accord-
ing to a preset keyword. It is intended mostly for internal use.

Usage
get.preset.opts(preset, org)
Arguments
preset preset can be one of "all.basic”, "all.normal”, "all.full"”, "medium.basic”,
"medium.normal”,
org one of the supported organisms. See metaseqr main help page. "medium. full”,

n o n

"strict.basic”, "strict.normal” or "strict.full”, each of which control
the strictness of the analysis and the amount of data to be exported. For an ex-
planation of the presets, see the main metaseqr help page.



get.strict.biofilter 57

Value

A named list with names exon.filters, gene.filters, pcut, export.what, export.scale,
export.values and export.stats, each of which correspond to an element of the metaseqr
pipeline.

Author(s)

Panagiotis Moulos

Examples

strict.preset <- get.preset.opts(”strict.basic”,”"mm9")

get.strict.biofilter  Group together a more strict biotype filter

Description

Returns a list with TRUE/FALSE according to the biotypes that are going to be filtered in a more
strict way than the defaults. This is a helper function for the analysis presets of metaseqR. Internal
use only.

Usage

get.strict.biofilter(org)

Arguments

org one of the supported organisms.

Value

A list of booleans, one for each biotype.

Author(s)

Panagiotis Moulos

Examples

sf <- get.strict.biofilter("hg18")



58 get.ucsc.annotation

get.transcript.utr.attributes
Annotation downloader helper

Description

Returns a vector of genomic annotation attributes which are used by the biomaRt package in order
to fetch the transcript annotation for each organism. It has no parameters. Internal use.

Usage
get.transcript.utr.attributes(org)
Arguments
org one of the supported organisms.
Value

A character vector of Ensembl transcript attributes.

Author(s)

Panagiotis Moulos

Examples

tran.attr <- get.transcript.utr.attributes(”mm9")

get.ucsc.annotation UCSC/RefSeq annotation downloader

Description

This function connects to the UCSC Genome Browser public database and downloads annotation
elements (gene co-ordinates, exon co-ordinates, gene identifications etc.) for each of the supported
organisms, but using UCSC instead of Ensembl. See the help page of metaseqr for a list of sup-
ported organisms. The function downloads annotation for an organism genes or exons.

Usage

get.ucsc.annotation(org, type, refdb="ucsc"”,
multic=FALSE)



get.ucsc.credentials 59

Arguments
org the organism for which to download annotation.
type either "gene"” or "exon".
refdb either "ucsc” or "refseq”.
multic a logical value indicating the presence of multiple cores. Defaults to FALSE. Do
not change it if you are not sure whether package parallel has been loaded or not.
It is used in the case of type="exon" to process the return value of the query to
the UCSC Genome Browser database.
Value

A data frame with the canonical (not isoforms!) genes or exons of the requested organism. When
type="genes", the data frame has the following columns: chromosome, start, end, gene_id, gc_content,
strand, gene_name, biotype. When type="exon" the data frame has the following columns: chro-
mosome, start, end, exon_id, gene_id, strand, gene_name, biotype. The gene_id and exon_id cor-
respond to UCSC or RefSeq gene and exon accessions respectively. The gene_name corresponds

to HUGO nomenclature gene names.

Note

The data frame that is returned contains only "canonical”" chromosomes for each organism. It does
not contain haplotypes or random locations and does not contain chromosome M. Note also that as
the UCSC databases do not contain biotype classifications like Ensembl. These will be returned as
NA and as a result, some quality control plots will not be available.

Author(s)

Panagiotis Moulos

Examples

hg19.genes <- get.ucsc.annotation("hg19"”,"gene", "ucsc")

n on

mm9.exons <- get.ucsc.annotation("mm9"”,"exon", "refseq")

get.ucsc.credentials  Return host, username and password for UCSC Genome Browser
database

Description
Returns a character vector with a hostname, username and password to connect to the UCSC
Genome Browser database to retrieve annotation. Internal use mostly.

Usage

get.ucsc.credentials()

Value

A named character vector.



60 get.ucsc.dbl

Author(s)

Panagiotis Moulos

Examples

db.creds <- get.ucsc.credentials()

get.ucsc.dbl Download annotation from UCSC servers, according to organism and
source

Description

Directly downloads UCSC and RefSeq annotation files from UCSC servers to be used with metaseqR.
This functionality is used when the package RMySQL is not available for some reason, e.g. Win-
dows machines. It created an SQLite database where the same queries can be used.

Usage
get.ucsc.dbl(org, type, refdb="ucsc")
Arguments
org one of metaseqR supported organisms.
type either "gene"” or "exon".
refdb one of "ucsc” or "refseq” to use the UCSC or RefSeq annotation sources
respectively.
Value
An SQLite database.
Author(s)

Panagiotis Moulos

Examples

db.file <- get.ucsc.dbl("hg18","gene","ucsc")



get.ucsc.organism 61

get.ucsc.organism Return a proper formatted organism alias

Description

Returns the proper UCSC Genome Browser database organism alias based on what is given to
metaseqR. Internal use.

Usage
get.ucsc.organism(org)
Arguments
org one of the metaseqr supported organism.
Value

A proper organism alias.

Author(s)

Panagiotis Moulos

Examples

org <- get.ucsc.organism("danrer7")

get.ucsc.query Return queries for the UCSC Genome Browser database, according to
organism and source

Description

Returns an SQL query to be used with a connection to the UCSC Genome Browser database and
fetch metaseqR supported organism annotations. This query is constructed based on the data source
and data type to be returned.

Usage
get.ucsc.query(org, type, refdb="ucsc")
Arguments
org one of metaseqR supported organisms.
type either "gene" or "exon".
refdb one of "ucsc” or "refseq” to use the UCSC or RefSeq annotation sources

respectively.



62 get.ucsc.tabledef

Value

A valid SQL query.

Author(s)

Panagiotis Moulos

Examples

non

db.query <- get.ucsc.query("hg18","gene", "ucsc")

get.ucsc.tabledef Get SQLite UCSC table defintions, according to organism and source

Description

Creates a list of UCSC Genome Browser database tables and their SQLite definitions with the
purpose of creating a temporary SQLite database to be used used with metaseqR. This functionality
is used when the package RMySQL is not available for some reason, e.g. Windows machines.

Usage
get.ucsc.tabledef(org, type, refdb="ucsc", what="queries")
Arguments
org one of metaseqR supported organisms.
type either "gene" or "exon".
refdb one of "ucsc” or "refseq” to use the UCSC or RefSeq annotation sources
respectively.
what either "queries” for SQLite table definitions or "fields"” for only a vector of
table field names.
Value

A list with SQLite table definitions.

Author(s)

Panagiotis Moulos

Examples

db.tabledefs <- get.ucsc.tabledef("hg18","gene","ucsc")



get.ucsc.tbl.tpl 63

get.ucsc.tbl.tpl Create SQLite UCSC table template defintions

Description

Returns an SQLIte table template defintion, according to UCSC Genome Browser database table
schemas. This functionality is used when the package RMySQL is not available for some reason,
e.g. Windows machines. Internal use only.

Usage
get.ucsc.tbl.tpl(tab, what="queries")
Arguments
tab name of UCSC database table.
what "queries” for SQLite table definitions or "fields" for table column names.
Value

An SQLite table definition.

Author(s)

Panagiotis Moulos

Examples

db.table.tmpl <- get.ucsc.tbl.tpl("knownCanonical”)

get.valid.chrs Annotation downloader helper

Description

Returns a vector of chromosomes to maintain after annotation download. Internal use.

Usage
get.valid.chrs(org)
Arguments
org the organism for which to return the chromosomes.
Value

A character vector of chromosomes.



64 get.weights

Author(s)

Panagiotis Moulos

Examples

hg18.chr <- get.valid.chrs("hg18")

get.weights Get precalculated statistical test weights

Description

This function returns pre-calculated weights for human, chimpanzee, mouse, fruitfly and arabidop-
sis based on the performance of simulated datasets estimated from real data from the ReCount
database (http://bowtie-bio.sourceforge.net/recount/). Currently pre-calculated weights
are available only when all six statistical tests are used and for normalization with EDASeq. For
other combinations, use the estimate.aufc.weights function.

Usage
get.weights(org = c("human”, "chimpanzee", "mouse",
"fruitfly”, "arabidopsis"”))
Arguments
org "human”, "chimpanzee”, "mouse”, "fruitfly"” or "arabidopsis"”.
Value

A named vector of convex weights.

Author(s)

Panagiotis Moulos

Examples

wh <- get.weights("human"”)


http://bowtie-bio.sourceforge.net/recount/

graphics.close

graphics.close Close plotting device

Description

Wrapper function to close a plotting device. Internal use only.

Usage
graphics.close(0)
Arguments
o) the plotting device, see main metaseqr function
Author(s)

Panagiotis Moulos

Examples

graphics.close("pdf")

graphics.open Open plotting device

Description

Wrapper function to open a plotting device. Internal use only.

Usage
graphics.open(o, f, ...)
Arguments
the plotting device, see main metaseqr function
a filename, if the plotting device requires it (e.g. "pdf")
further arguments to be passed to plot devices, such as parameter from par.
Author(s)

Panagiotis Moulos

Examples

graphics.open("pdf”,"test.pdf"”,width=12,height=12)



66 libsize.list.hg19

hg19.exon.counts Human RNA-Seq data with three conditions, three samples

Description

This data set contains RNA-Seq exon read counts for 3 chromosomes. The data are from an exper-
iment studying the effect of a long non-coding RNA related to the ASCL2 gene in WNT signaling
and intestinal cancer. It has two conditions (CON, DOX) and four samples (CON_BR1, CON_BR2,
DOX_BRI1, DOX_BR2). It also contains a predefined sample.list and libsize.list 