
1 Introduction

There are two methods for describing the results of a BeadArray experiment.
Firstly, we can use bead-level data whereby the position and intensity of each
individual bead on an array is known. The methods available for processing bead
level data are discussed in: Dunning,M.J et al, Quality Control and Low-level
Statistical Analysis of Illumina Beadarrays, Revstat 4, 1-30.

Bead summary data can also be used whereby a summary intensity for each
bead type on an array is given. The summarised values for a particular bead
type can then be compared between different arrays within an experiment.

Whilst the beadarray package includes methods for processing data of both
kinds, bead summary data is far more widely available at the present time. As
such, the methods described within this document focus exclusivly on dealing
with bead summary data. The bead summary data can be data obtained using
either the BeadChip (6 or 8 arrays on a slide) or SAM (arrays organised in 96
well plates) technologies. This document uses a SAM experiment as an example
although BeadChip can be read in the same manner.

See References for further reading on BeadArray technology.

2 Reading bead summary data

Bead summary data produced by BeadStudio (Illumina’s application for reading
raw BeadArray data) can be read directly into our library. The function used is
readBeadSummaryData and requires a set of text files as an input. Each text file
can describe the bead summary data for a particular array in the experiment,
or it may describe all arrays.Alternatively, bead summary data can be derived
from bead level data. Example files are provided at the following URL with
each file describing a single array from a SAM experiment

www.damtp.cam.ac.uk/user/jcm68/beadarray.html
Once the example files have been downloaded they can be read into R. By

default, the files are read from the current working directory in R, but this can
be changed by setting the path parameter. The targets object is used to define
a vector of file names to be read and is created by reading the beadSumma-
ryTargets.txt file (see example file). For experiments with a large number of
arrays, it may be inconvenient to create the targets text file. Therefore, the
readBeadSummaryData is able to read all files in the working directory if the
targets parameter is omitted. By default, the function looks for each of the
column headings as they are listed below. It is possible to use alternative names
for headings (eg nobeads instead of NoBeads).

� TargetID - an identifier for each bead type (probe type) on the array

� AVG Signal - Summary intensity produced by averaging bead intensities
of all beads of a particular type

� BEAD STDEV - Standard deviation of all beads of a particular type,
outliers excluded

� Avg NBEADS - Number of beads used to produce average

� Detection - Average detection score for each bead type

1

These column names are the default names given to files produced by Bead-
Studio. Any other column names of interest can be read by setting the other.columns
parameter. Usage of readBeadSummaryTargets is as follows.

> targets = readBeadSummaryTargets()

> BSData = readBeadSummaryData(targets, sep = "\t")

Reading file plate1_1
Reading file plate1_1
Reading file plate1_2
Reading file plate1_3
Reading file plate1_4

NB the text files are tab-delimited files hence we use the �seperator. By
default, comma-seperated files are assumed. Each file is assumed to contain 7
lines of header information created by BeadStudio and hence the first 7 lines
of text are ignored before the file is read. Removing or alternating this header
information would require the skip parameter to readBeadSummaryData to be
changed.

A BeadSummaryList , is a list based object with the following sublists:

� R - averaged foreground intensities

� ProbeID - unique identifer for the probe

� BeadStDev - standard deviation of all beads of a particular type

� Nobeads - number of beads used to produce average

� Detection - average detection score for each bead type

The entries in a BeadSummaryList are all matrices with the each row cor-
responding to a particular bead type and the columns to individual arrays.

A common cause of error when reading files is for the column names found
in the files to not match the headings that R expects to find. The columns
parameter is used to change which column headings to look for in the input file.

In the example bead summary file, each file gives data for a seperate ar-
ray in a experiment. It is also possible to read files containing data for more
than one array using readBeadSummaryData. Files of this type are assumed
to have a number of rows equal to the number of bead types in the exper-
iment (eg 1500 for SAM or 24,000 for BeadChip) and the same columns for
each array. The column headings are assumed to be of the form AVG Signal-1,
AVG Signal-2,...AVG Signal-n for n arrays. This is the standard output pro-
duced by BeadStudio. See below for a screenshot of an exampe file containing
two arrays.

2

All functions described from now on use a BeadSummaryList object as a
parameter. This object can either be created using the steps described above,
or can be created from bead-level data by using the createBeadSummaryData
function (see Dunning et al). An example BeadSummaryList object is provided
with this library and can be loaded at any time using the command.

> data(BSData)

> names(BSData)

[1] "R" "Nobeads" "Detection" "BeadStDev" "ProbeID" "targets"

We can use the detection score as a preliminary indicator of the quality of
each array. Using the following commands we can construct a boxplot of the
intensity for each probe on an array. This may reveal systematic differences
between arrays, although in this four array example it is not very informative.
Boxplots of the average number of beads for each bead type can also be con-
structed.

> par(mfrow = c(1, 2))

> boxplot(log2(BSData$R), main = "Foreground Intensities")

> boxplot(BSData$Nobeads, main = "Bead Distribution")

●

●

●

●

●

●

●

●

●
●
●●●
●
●
●
●

●
●

●

●

●●●
●

●

●●●
●

●

●

●

●

●
●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●●

●

●
●
●

●●

●●

●

●

●

●

●

●

●
●

●
●●
●●
●
●

●

●

●

●

●

●
●

●●●

●
●●●
●

●

●

●

●

●●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●
●

●●

●

●●

●

●●

●

●

●

●

●●
●
●
●

●●

●

●●

●

●

●
●

●

●

●●
●
●
●

●●

●

●

●

●

●
●●

●

●

●

●

●

●
●●

●
●

●

●●

●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●●
●

●

●●
●

●●●

●
●
●

●
●

●

●

●●●
●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●●

●●

●

●
●

●

●

●

●
●

●

●

●●

●

●●

●

●
●●

●●

●

●

●
●

●●

●

●

●●

●
●
●
●●●
●

●

●

●
●
●

●

●
●

●
●

●●
●●

●●

●

●

●

●

●

●

●
●
●

●

●
●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●●
●●●
●

●

●

●

●

●
●

●

●

●

●
●

●

●
●●

●
●

●

●●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●●
●

●

●

●
●

●●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●
●
●

●

●

●●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●
●
●
●
●
●
●

●

●
●

●

●
●
●

●●

●
●
●
●
●
●●

●●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●●

●

●
●●

●

●
●

●

●●

●

●●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●●

●
●

●

●

●

●
●●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●●●

●
●

●
●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●
●

●

●
●

●●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●
●
●
●●●

●
●
●

●

●●

●●
●
●
●●

●
●
●

●●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●
●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●●

●
●

●●

●
●
●●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

plate1_1 plate1_2 plate1_3 plate1_4

8
10

12
14

Foreground Intensities

●
●
●
●
●

●

●

●

●

●
●
●●
●

●

● ●

●

●
●
●●
●

●
●

●

●

●

●

●
●
●●
●
●

plate1_1 plate1_2 plate1_3 plate1_4

10
20

30
40

50
60

Bead Distribution

3

3 Plotting Values Across Whole SAMs and Use
of Control Information

The plotProbeVariation function can be used to plot the variation in a par-
ticular probe / bead type on all arrays in an experiment. The input to the
function is simply an BeadSummaryList object, and a ProbeID. The result is
not very interesting for this data set as we only have 4 arrays.

> plotProbeVariation(BSData, ProbeID = 2)

We have provided a SAM summary plot for when we want to compare the
intensity of a particular bead type across all arrays on one SAM. In its most
simple form we use plotOnSAM(v) where v is simply a vector of numeric values
with length 96. To create the vector v we could make use of the function
getMeanIntensities(BSData, probe) which will return the mean intensity of
beads with probeID on each of the arrays in the experiment. For instance
probeID 4279 is a housekeeping control in the example experiment, so we can
do.

> getMeanIntensities(BSData, 4279)

As an example we show the variation in a hybridisation control across 96
arrays using the plotOnSAM function.

On the left-hand plot we have array index on the x axis and on the y axis
we have the corresponding value of v for each of the 96 arrays. Instantly we can
see the numbers of arrays for which the value of v is lower.

On the right-hand plot we relate the vector v to the position of each array
on the SAM. The arrays are numbered from 1 in top-left corner to 96 in the
bottom-right corner. The colour of each hexagon is related to its value of v, the
higher this value the brighter the shade of red (a greyscale version of the plot
can also be made).

In the figure above we can see that the line in the left hand plot is very
erratic and the colour of the hexagons range from black through to bright red.
Both of these indicate that the values in vector v change greatly across the SAM.
Using the right hand plot we can quickly identify which probes have the lowest
intensities allowing us to easily go and investigate the possible reasons. The
BeadStudio application provided by Illumina is able to produce the plot seen in
the left panel of the plotOnSAM function output, but we feel that our method
is more flexible. With our function we can plot values of any probe (not just

4

controls) and can plot intensities on both raw and logged scale. We can also
see whereabouts any potential problem arrays are located on the SAM. In the
examples above we found the values of a particular bead type across all arrays
and used as input to plotOnSAM. This plotting function is flexible because it
allows any vector of numeric values with length 96 as input. For instance we
could also use the number of outliers on each of the 96 arrays or the number of
unregistered beads as input.

4 Comparing Samples

We have implemented both XY plots and MA plots and these can be viewed
simultaneously for a series of arrays (the MAXY plot). In an XY plot, for a
particular gene, we simply plot the value obtained from two different samples
against each other with one sample on the x axis and one sample on the y axis.
For an MA plot we plot the average intensity of each gene from the two different
samples against the difference. For conventional microarrays, the MA plot can
often reveal important differences between the two dyes used for hybridisation
and give us an idea of the amount of noise generated by experiments.

The functions created for the library are capable of making comparisons be-
tween the red and green channels for the same array as well as between two
arrays from a one-colour experiment. However, we did not have any two colour
data when creating this document, so the following examples will be for com-
paring two different arrays from a one-colour experiment.

> vec = c(1, 2, 3, 4)

> plotMAXY(BSData, vec)

5

The resulting graphic is in a 4 x 4 grid. In the first row we have MA-plots
of the first array compared to arrays 2,3 and 4 and in the first column there are
XY plots of the first array compared to arrays 2,3 and 4.

If comparing replicates of the sample we would expect to see very little
variation in the plots so XY plots should be centred around the diagonal and
MA plots about the horizontal

The plotMAXY can be made to highlight particular control types or genes of
interest. This is done by defining a genes matrix which contains information
about each gene in an experiment. To define the genes we require an Excel
file that defines the ProbeID and name of each gene. Part of an example file is
shown below and was created by adapting a bead set manifest file supplied by
Illumina.

Such a file (in this example called my gene list.csv) can be read into the
library by using the readProbeInfo function which creates an extra matrix
- $genes in the BeadSummaryList object. We read the Target, ProbeID and
Symbol columns from the file.

> names(BSData)

[1] "R" "Nobeads" "Detection" "BeadStDev" "ProbeID" "targets"

> BSData = readProbeInfo(file = "my gene list.csv", BSData, columns = c("Target",

+ "ProbeID", "Symbol"))

> names(BSData)

[1] "R" "Nobeads" "Detection" "BeadStDev" "ProbeID" "targets"
[7] "genes"

> BSData$genes[1:10,]

Target ProbeID Symbol
1 GI_24497491-S 1104 SLC22A5
2 GI_31742479-I 4153 YWHAB
3 GI_31742479-I 6016 YWHAB
4 GI_31742480-A 1588 YWHAB
5 SPINT3-001-S 4123 SPINT3-001
6 SPINT3-001-S 1002 SPINT3-001
7 GI_4826835-S 3790 MMP9
8 GI_4826835-S 4091 MMP9
9 GI_33620724-S 1250 DSCR1
10 GI_33620724-S 1595 DSCR1

6

We can use a separate file to define which genes we are interested in highlight-
ing on the plots. In the screenshot below we have defined a set of housekeeping
genes by their ProbeIDs and a gene with a particular symbol that we might be
interested in.

To set which genes we are interested in we use functions found in the limma
package.

> types = readSpotTypes("control types.csv", sep = ",")

> BSData$genes$Status = controlStatus(types, BSData$genes)

Matching patterns for: ProbeID Symbol
Found 1 housekeeping
Found 1 housekeeping
Found 1 housekeeping
Found 1 housekeeping
Found 1 housekeeping
Found 1 housekeeping
Found 1 housekeeping
Found 1 housekeeping
Found 1 housekeeping
Found 1 housekeeping
Found 1 housekeeping
Found 1 housekeeping
Found 1 housekeeping
Found 1 housekeeping
Found 2 MY GENE
Setting attributes: values Name Colour

The output of controlStatus says that we have found each of the genes.
Now to see the genes plotted...

> plotMAXY(BSData, vec = 1:4, label = TRUE)

7

The housekeeping genes are labelled in red and the other gene we specified
in the file is labelled in green.

5 Normalisation Methods

The normalisation methods currently implemented in beadarray are

� medianNormalise - scaling the medians of arrays to make them compara-
ble

� quantileNormalise - fitting each array to have the same distribution

� qsplineNormalise - fit a smoothing curve to each array using quantiles
[7]

The plotMAXY function can be used to assess the performance of normalisa-
tion methods on the data by seeing if the normalisation removes any systematic
trends that exist prior to normalisation. plotMAXY combines two functions for
creating XY and MA plots. These functions can be called separately to compare
two arrays in more detail.

8

> par(mfrow = c(1, 2))

> plotMA.beads(BSData, array1 = 1, array2 = 2)

> plotXY.beads(BSData, array1 = 1, array2 = 2, log = TRUE)

6 Further Analysis

Additional methods that can be applied to bead summary data include cluster
analysis, principal components analysis and linear modelling and use existing
functions from other libraries. In this section we will give a brief overview
demonstrating how the object types present in the beadarray can be analysed.

Clustering can be achieved by using existing functions on the expression
matrix of the BSData object. The following code can be used to cluster samples

> d = dist(t(BSData$R))

> plclust(hclust(d))

pl
at

e1
_3

pl
at

e1
_4

pl
at

e1
_1

pl
at

e1
_2

70
00

90
00

11
00

0
13

00
0

hclust (*, "complete")
d

H
ei

gh
t

See help files for the various options available for hclust. The heatmap
function or principal components analysis could also be used.

> heatmap(as.matrix(BSData$R))

> pca = princomp(d)

> biplot(d)

9

7 Converting to exprSet objects

Objects of type BeadSummaryList can be easily be transformed into objects of
type exprSet by setting the exprs of the exprSet to be the existing R matrix of
the existing BeadSummaryList .

> library(convert)

> eSet = new("exprSet", exprs = BSData$R)

References

[1] GUNDERSON K., KRUGLYAK S, GRAIGE S., GARCIA F., KER-
MANI BG., ZHAO C., CHE D., DICKINSON T., WICKHAM E.,
BIERLE E., et al. (2004). Decoding randomly ordered DNA arrays,
Genome Research, 14, 870-877.

[2] OLIPHANT A., BARKER D., STUELPNAGEL J., CHEE M.
(2002). BeadArray Technology: Enabling an Accurate, Cost-Effective Ap-
proach to High-Throughput Genotyping, Biotechniques, 14, 870-877.

[3] KUHN K., BARKER S., CHUDIN E., LIEU M., OESER S., BEN-
NETT H., RIGAULT P., BARKER D., MCDANIEL T., CHEE M.
(2004). A novel, high-performance random array platform for qualitative
gene expression profiling Genone Research

[4] STEINBERG G., STROMSBORG K., THOMAS L., BARKER D.,
ZHAO C. (2004). Strategies for Covalent Attachment of DNA to Beads
Biopolymers 73 597–605

[5] GUNDERSON K., STEEMERS FJ., LEE G., MENDOZA LG,.
CHEE M. (2005) A genome-wide scalable SNP genotyping assay using
microarray technology Nature Genetics 5 549–554

[6] BARNES M., FREUDENBERG J., THOMPSON S., ARONOW B.,
PAVLIDIS P. (2005). Experimental comparison and cross-validation of the
Affymetrix and Illumina gene expression analysis platforms Nucelic Acids
Research 33 5914–5923

[7] WORKMAN C., JENSEN L., JARMER H., BERKA R., GAUTIER
L., NIELSER H., SAXLID H., NIELSEN C., BRUNAK S., KNUD-
SEN S. (2002). A new non-linear normalization method for reducing vari-
ability in DNA microarray experiments Genome Biology 3

10

