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1 Introduction

The applera package is an environment for data analysis and exploration of Applied Biosystem
AB1700 oligonucleotide arrays.

1.1 Applied Biosystem arrays generalities

The Applied Biosystem arrays are single channel oligo arrays developed for human, mouse
and rat genomes. Probes are 60mers oligonucleotides. Probes are located within the last 1500
bp of the transcript end. Whenever possible, a unique probe is designed to detect all different
isoforms of a gene. Probe mapping to human, mouse and rat genes can be extracted from the
PANTHER database: http://panther.appliedbiosystems.com/

In these arrays chemioluminescence (CL) is used to measure gene expression and for quality
control. On the other hand fluorescence (FL) is used to auto-grid, and normalize every feature
in a way independent from gene expression signal. Chemioluminescence signal is generated
by cDNA/cRNA labelling with digoxygenin (DIG), by RT or by RT/IVT approach. The
quantification of the amount of DIG label cDNA/cRNA hybridized on probes is based on
the use of an anti-digoxigenin antibody labelled with an alkaline phophatase. Feature (spot)
characteristics (size, homogeneity, etc.) is evaluated using a unique 24mer fluorescence dye
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(Liz Dye labeled oligo), co-spotted with gene specific oligo. The Liz Dye signal is used as
internal control to normalize chemioluminescence.

Applera arrays are characterized by the presence of:

Labeling controls , which are used to monitor enzyme activity and DIG incorporation
during the labeling protocols (RT - bacterial genes -, IVT - linearized plasmids -).

Hybridization controls , which are used to monitor mixing, stringency, and washing during
the array hybridization protocol (pre labeled DIG target).

Chemiluminescent controls , which are used to demonstrate that the CL reaction chem-
istry is performing well during the assay (DIG labeled oligo co-spotted).

2 Data structure

The applera package contains the readAp function that allows to read tab delimited files
generated by the AB1700 instruments. Each array readout should be described by a tab
delimited file containing the following colums:

ProbeID , the probe array identifier

GeneID , primary Ids associated to spotted probes

Signal , the CL signal normalized by the FL signal over the feature integration aperture.
See AB1700 manual.

SDEV , which is an estimate of measurement uncertainty of Normalized Signal. See AB1700
manual.

CV , which is the fraction of uncertainty in the signal. Cv indicates the predicted spread of
feature signal. See AB1700 manual.

S/N , which expresses the confidence of feature dectability. See ABI1700 manual.

Flags , which is a numeric code that identifies conditions for each feature. It allows to
eliminate possibily problematic data. Features with flags greater than 100 might have
quality issues. See AB1700 manual.

This array-specific tab delimited file can be easily created using the AB1700 software.
The function readAp needs two arguments:

� A phenoData file containing as rownames of the covariates the names of the files to be
uploaded by the function.

� The organism identifier (”Hs.v1”or ”Hs.v2” for human, ”Mm” for mouse or ”Rn” for rat).

The readAp will read all the files present in the R working directory using the information
available in the phenoData file. The function will select the correct size of the array on the
basis of the organism identifier and it will create an istance of the applera class. The slots
of this object are:

Organism , an character object
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Geneid , an vector object

Signal , an exprSet object

Sdev , an exprSet object

Cv , an exprSet object

Sn , an exprSet object

Flags , an exprSet object

Ctrl , an list object

All slots up to Flags refer to gene probes as instead the Ctrl slot refers to all Applera controls,
which can be used for quality control, although fuctions performing quality control based on
Ctrl features are not yet implemented.

An object of the applera class (test) is available as data file:

> library("applera")

Loading required package: Biobase
Loading required package: affy
Loading required package: affyio
Loading required package: genefilter
Loading required package: survival
Loading required package: splines
Loading required package: limma
Loading required package: geneplotter
Loading required package: annotate
KernSmooth 2.22 installed
Copyright M. P. Wand 1997
Loading required package: RColorBrewer
Loading required package: prada
Loading required package: grid
Loading required package: combinat

> data(test)

> test

This is an instance of applera-class
Slots can be accessed using:
signal, sdev, cv, sn, flags methods
Each slot is an exprSet object made of
1000 genes
303 controls
6 samples

The test is a two class experiment performed on the AB1700 mouse array (condition
wk15: 3 biological replcates; condition wk19: 3 biological replicates).
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2.1 Methods of the applera-class

The applera class allows to access to the slot names using the following methods: organism,
geneid, signal, sdev, cvAp, sn, flags, ctrl,

To access to the exprSet object containing the log2 CL probe intensities you can use:

> signal(test)

Expression Set (exprSet) with
1000 genes
6 samples

phenoData object with 3 variables and 6 cases
varLabels

num: read from file
sample: read from file
wk: read from file

As instead to access to the phenoData associated to the signal you can use:

> pData(signal(test))

num sample wk
MA001I9 6 11 15
MA000V0 7 30 15
MA0019Y 8 31 15
MA000UR 9 13 19
MA001I7 10 14 19
MA001D0 11 15 19

3 Subsetting applera objects

Two function have been implemented to allow probe-specific and experiment-specific subset-
ting:

� subExp, this function subsets an appleraSet given a vector of sampleNames. It needs
two parameters: the applera object and a character vector containing the names of the
arrays to be extracted.

> subex <- subExp(test, rownames(pData(signal(test)))[c(1, 3, 5)])

� subGenes, this function subsets an appleraSet given a vector of geneNames. It needs
two parameters: the applera object and a character vector containing the geneNames
to be extracted.

> subgx <- subGenes(test, geneNames(signal(test))[1:10])
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4 Quality Control through Data Exploration

4.1 Plotting probe data

Several of the functions for plotting probe data are useful for diagnosing problems with the
data. The plotting functions boxplot and hist have methods for applera objects. The method
hist allows to generate density histograms for all the slots of an applera object.

> hist(test)
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The method boxplot produces box-and-whisker plot(s) of all slots of an applera object.
The method mvaAp allows the generation of mva.pairs plots.

R>samples<-sampleNames(signal(test))[which(signal(test)$wk==15)]

R>mvaAp(subExp(test, samples))

These functions can be particularly useful in diagnosing problems in replicate sets of
arrays.
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4.2 Quality of replicates

An important issue in microarray analysis is the quality of replicates. The r-squared coeffi-
cient, which represent the fraction of variance explained by a linear model, is the parameter
most frequently used to evaluate replicates homogeneity. It varies from 1 to 0, where 1 indi-
cates that the two sets of data are identical, while 0 indicates the absence of similarity between
samples. Good replicates are usually characterized by an r-squared greater than 0.8. A more
efficient way to identify subtle differences within replicates has been introduced by Irizarry
(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_
uids=15846361). Irizarry approach, is based on the use of a reference array against which
biological replicates are compared. The homogeneity within replicates is then evaluated at
the level of absolute expression fold change variation of each gene with respect to the refer-
ence. Each biological replicate is described as the sorted list (absolute fold change variation
descending order) of all probe sets. Homogeneous replicates having at the top rank posi-
tions (e.g. 100-1000) a concordance in probe set composition of at least 0.4, correspond to a
r-squared between replicates greater than 0.9.

This approach has been implemented in a function called CATPlots. The CATPlots
accepts applera, exprSet objects and numerical matrices. It has been designed to allow
the quality evaluation for two groups experiments. In the case of the applera object test the
quality of wk19 condition can be compared with that of wk15 condition and viceversa.

From the CATPlots it is clear that the wk19, left panel, are homogeneous within each
other (curves with the same colour). However, replicate quality changes depending on the
wk15 reference sample used (the reference array names are located in the upper part of each
panel and are associate to specific plotting colors). The option upsideDown=T allows to revert
the comparison (right panel). From this plot it is cleat that the quality of the wk15 group is
much lower of wk19. It is interesting to note that the r-squared for the wk15 group is greater
of 0.85, suggesting that CATPlots better highlight subtle differences between replicates.

> xx

$resultR2Ctrl
experiments correlations

1 MA001I9 vs MA000V0 0.8673467
2 MA001I9 vs MA0019Y 0.8608140
3 MA000V0 vs MA0019Y 0.8418369

$resultR2Trt
experiments correlations

1 MA000UR vs MA001I7 0.8886683
2 MA000UR vs MA001D0 0.8878290
3 MA001I7 vs MA001D0 0.9210257
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> xx <- CATPlots(test, c(0, 0, 0, 1, 1, 1), 100, 500, upsideDown = TRUE)
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5 Data normalization

This is an important issue in microarray since it ensures that differences in intensities are
indeed due to differential expression, and not to technical artifacts, and it is also required
prior to any analysis which involves between-array comparisons of intensities. AB1700 in-
strument, after CL normalization via FL signal (see AB1700 manual), suggests as default
normalization that intensities should be scaled so that each array has the same average
value (constant normalization, in affy Bioconductor package). This approach, however, is
less effective in the case of non-linear relationships between arrays, which are efficiently
dealt with by the approaches of Li and Wong (http://www.ncbi.nlm.nih.gov/entrez/
query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=11532216) and Bolstad
(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_
uids=12538238).

From the normalization methods implemented in the affy Bioconductor package, two were
implemented in the applera package:

Cyclic loess - This approach stems from the M versus A plot, where M is the difference in
log expression values and A is the average of those (http://www.ncbi.nlm.nih.gov/
entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=11842121).
A normalization curve is fitted to this M versus A plot by using loess, which is a method
of local regression. The fits based on the normalization curve are subsequently sub-
tracted from the M values. However, rather than being applied to two-color channels
on the same array, as is done in the cDNA case, normalization is applied to probe inten-
sities from two arrays at a time. An M versus A plot for normalized data should show
a point cloud scattered about the M = 0 axis. To deal with more than two arrays, the
method is extended to look at all distinct array pairwise combinations.

R> test.L<-normLoess(test) ##cyclic-loess normalization

Quantile normalization - The goal of the quantile method is to make the distribution of
probe intensities for each of a set of arrays the same. The idea behind the method
is that a quantile-quantile plot shows that the distribution of two data vectors is the
same if the plot is a straight diagonal line, but not if it is other than a diagonal. This
concept can be extended to n dimensions if more then two arrays are available. This
suggests that an n set of data can be made to have the same distribution by projecting
the points of the n dimensional quantile plot onto the diagonal. This normalization can
be easily done by organizing the arrays to be normalized in a matrix, where columns
represent the arrays and the rows gene-specific PMs. Each column is then sorted in a
descending order. The means across rows are taken and assigned to each element of the
rows. Columns are then reordered as the original matrix to generate the normalized set.

R> test.Q<-normQuantile(test) ##quantile normalization

6 Data filtering

The premise of this important step in microarray data analysis is removal of genes deemed
to be not expressed according to some specific criterion under the control of the user (http:
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//www.bepress.com/bioconductor/paper7/). It can also be used to eliminate genes that do
not show sufficient variation in expression across all samples, since their little discriminatory
power. Three filtering approaches have been implemented in applera package:

� The apFilter allows filtering on the bases of S/N or Flags. The function is an imple-
mentation of the pOverA genefilter function. The function needs an object of applera
class, a p-value ranging 0 - 1. Where p-value indicates the minimum fraction of ex-
periments satisfying a specific condition A (e.g. filtering for S/N, using p=1 and A=3;
indicates that all experimental condition, for a specific gene, should be characterized by
a S/N equal or greater than 3, indicating a confidence of 0.99 that the signal measure-
ment is different from background. In the case of flags filtering A indicates the max
flag value that can be accepted (High flag values indicate a low quality of the feature
measurement).

R>sn.subset <- apFilter(test, 0.5, 3, "sn")

R>flags.subset <- apFilter(test, 0.5, 2, "flags")

� The iqrFilter is an implementation of the IQR filtering described by von Heydebreck
(http://www.bepress.com/bioconductor/paper7/).

R>iqr.sn.subset<-iqrFilter(sn.subset, 0.25)
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