
HowTo Render A Graph Using Rgraphviz

Jeff Gentry

April 25, 2006

1 Overview

This article will demonstrate how to easily render a graph from R into various
formats using the Rgraphviz . To do this, first we need to generate a R graph
using the graph package:

> library(Rgraphviz)

> set.seed(123)

> V <- letters[1:10]

> M <- 1:4

> g1 <- randomGraph(V, M, 0.2)

> g1

A graphNEL graph with undirected edges
Number of Nodes = 10
Number of Edges = 16

2 Plotting in R Using Different Layout Methods

It is quite simple to generate a R plot window to display your graph. Once you
have your graph object, simply use the plot method:

1

a

b

c

d

e

f

g

h

i j

The Rgraphviz package allows you to specify varying layout engines, such
as ”dot” (the default), ”neato”, and ”twopi”. This can be done using the call to
plot:

> z <- plot(g1, "neato")

2

a b

c

d ef

g
h

i

j

The ”twopi” layout method requires a graph to be fully connected. To de-
termine if your graph is fully connected:

> isConnected(g1)

[1] FALSE

A working ”twopi” layout can be seen with this graph:

> set.seed(123)

> V <- letters[14:22]

> g2 <- randomEGraph(V, 0.2)

> isConnected(g2)

[1] FALSE

> z <- plot(g2, "twopi")

3

n

o

p

q

rst
u

v

And finally, to demonstrate how the differing layout methods work on this
second graph:

> z <- plot(g2, "dot")

4

n

o

p

q

r

st

u

v

> z <- plot(g2, "neato")

5

n
o

p
q

r s
t

u

v

Note that there is an option, recipEdges that details how to deal with re-
ciprocated edges in a graph. The two options are combined (the default) and
distinct . This is mostly useful in directed graphs that have reciprocating edges
- the combined option will display them as a single edge with an arrow on both
ends while distinct shows them as two separate edges.

> rEG <- new("graphNEL", nodes = c("A", "B"), edgemode = "directed")

> rEG <- addEdge("A", "B", rEG, 1)

> rEG <- addEdge("B", "A", rEG, 1)

> plot(rEG)

6

A

B

In this first example above, the edges were combined, whereas below they
are showed separately.

> plot(rEG, recipEdges = "distinct")

7

A

B

The function removedEdges can be used to return a numerical vector detail-
ing which edges (if any) would be removed by the combining of edges.

> a <- removedEdges(g1)

> a

[1] 7 12 13 17 18 19 22 23 24 25 27 28 29 30 31 32

3 SubGraphs

Rgraphviz supports the ability to define specific clustering of nodes. This will
instruct the layout algorithm to attempt to keep the clustered nodes close to-
gether. To do this, one must first generate the desired set (one or more) of
subgraphs with the graph object.

> sg1 <- subGraph(c("a", "d", "j", "i"), g1)

> sg1

A graphNEL graph with undirected edges
Number of Nodes = 4
Number of Edges = 1

> sg2 <- subGraph(c("b", "e", "h"), g1)

> sg2

8

A graphNEL graph with undirected edges
Number of Nodes = 3
Number of Edges = 3

> sg3 <- subGraph(c("c", "f", "g"), g1)

> sg3

A graphNEL graph with undirected edges
Number of Nodes = 3
Number of Edges = 0

To plot using the subgraphs, one must use the subGList argument which is
a list of lists, with each sublist having three elements:

� graph : The actual graph object for this subgraph.

� cluster : A logical value noting if this is a cluster or a subgraph. A value
of TRUE (the default, if this element is not used) indicates a cluster.
In Graphviz, subgraphs are used as an organizational mechanism but are
not necessarily laid out in such a way that they are visually together.
Clusters are laid out as a separate graph, and thus Graphviz will tend to
keep nodes of a cluster together. Typically for Rgraphviz users, a cluster
is what one wants to use.

� attrs : A named vector of attributes, where the names are the attribute
and the elements are the value. For more information about attributes,
see the section Attributes below.

Please note that only the graph element is required. If the cluster element
is not specified, the subgraph is assumed to be a cluster and if there are no
attributes to specify for this subgraph then attrs is unnecessary.

> subGList <- vector(mode = "list", length = 3)

> subGList[[1]] <- list(graph = sg1)

> subGList[[2]] <- list(graph = sg2, cluster = FALSE)

> subGList[[3]] <- list(graph = sg3)

> plot(g1, subGList = subGList)

9

a

b c

d

e

fg

hij

To demonstrate the differences that will appear with different subgraph pat-
terns, another example is provided:

> sg1 <- subGraph(c("a", "c", "d", "e", "j"), g1)

> sg2 <- subGraph(c("f", "h", "i"), g1)

> plot(g1, subGList = list(list(graph = sg1), list(graph = sg2)))

10

a

b

c

d

e

f

g

h

i

j

3.1 A Note About Edge Names

While internal node naming is quite straight forward (it is simply taken from the
graph object), Rgraphviz needs to be able to uniquely identify edges by name.
End users as well will need to be able to do this to correctly assign attributes
(see Attributes). The name of an edge is x~y where x is the tail node and y
is the head node. The method edgeNames can be used to obtain a vector of all
edge names, and takes the argument recipEdges so that the output correctly
matches which edges will be used by Rgraphviz .

> edgeNames(g1)

[1] "a~b" "a~d" "a~e" "a~f" "a~h" "b~f" "b~d" "b~e" "b~h" "c~h" "d~e" "d~f"
[13] "d~h" "e~f" "e~h" "f~h"

> edgeNames(g1, recipEdges = "distinct")

[1] "a~b" "a~d" "a~e" "a~f" "a~h" "b~f" "b~a" "b~d" "b~e" "b~h" "c~h" "d~a"
[13] "d~b" "d~e" "d~f" "d~h" "e~a" "e~b" "e~d" "e~f" "e~h" "f~b" "f~a" "f~d"
[25] "f~e" "f~h" "h~c" "h~a" "h~b" "h~d" "h~e" "h~f"

11

4 Attributes

5 The Attributes List

There are many visualization options in Graphviz that can be set beyond those
which are given explicit options using Rgraphviz - such as colors of nodes and
edges, which node to center on for twopi plots, node labels, edge labels, edge
weights, arrow heads and tails, etc. A list of all available attributes is accessible
online at: http://www.graphviz.org/pub/scm/graphviz2/doc/info/attrs.
html. Note that there are some differences between default values and also
some attributes will not have an effect in Rgraphviz. Please see the man page
for graphvizAttributes for more details.

Attributes can be set both globally (for the entire graph, for all edges, all
nodes, etc) as well as on a per-node and per-edge basis. Global attributes are
set via a list and passed in as the attrs argument to plot. A default set of
global attributes are used for global values which are not specified (by using the
getDefaultAttrs function). The getDefaultAttrs function will take a partial
global attribute list (see below for a description) and/or the layout type to be
used (dot, neato, or twopi) and will generate an attribute list to be used with
defaults for values that the user did not specify. The list has four elements:
’graph’, ’cluster’, ’edge’ and ’node’. Within each element is another list, where
the names correspond to attributes and the values correspond to the value to
use globally on that attribute. An example of this structure can be seen with
the default list provided by getDefaultAttrs:

> defAttrs <- getDefaultAttrs()

> defAttrs

$graph
$graph$bgcolor
[1] "transparent"

$graph$fontcolor
[1] "black"

$graph$ratio
[1] "fill"

$graph$overlap
[1] ""

$graph$splines
[1] TRUE

$graph$rank
[1] "same"

12

http://www.graphviz.org/pub/scm/graphviz2/doc/info/attrs.html
http://www.graphviz.org/pub/scm/graphviz2/doc/info/attrs.html

$graph$size
[1] "11.1929133858268,7.76771653543307"

$graph$rankdir
[1] "TB"

$cluster
$cluster$bgcolor
[1] "transparent"

$cluster$color
[1] "black"

$cluster$rank
[1] "same"

$node
$node$shape
[1] "circle"

$node$fixedsize
[1] TRUE

$node$fillcolor
[1] "transparent"

$node$label
[1] ""

$node$color
[1] "black"

$node$fontcolor
[1] "black"

$node$fontsize
[1] "14"

$node$height
[1] "0.5"

$node$width
[1] "0.75"

13

$edge
$edge$color
[1] "black"

$edge$dir
[1] "both"

$edge$weight
[1] "1.0"

$edge$label
[1] ""

$edge$fontcolor
[1] "black"

$edge$arrowhead
[1] "none"

$edge$arrowtail
[1] "none"

$edge$fontsize
[1] "14"

$edge$labelfontsize
[1] "11"

$edge$arrowsize
[1] "1"

$edge$headport
[1] "center"

$edge$layer
[1] ""

$edge$style
[1] "solid"

$edge$minlen
[1] "1"

To manually set some attributes, but not others, pass in a list with the

14

specific attributes that you desire. In the following example, we will be setting
two attributes (label and fillcolor for nodes, one for edges (color) and one for
the graph itself (rankdir). We could also have called getDefaultAttrs with the
same list that we are passing as the attrs argument, but there is no need here.

> plot(g1, attrs = list(node = list(label = "foo", fillcolor = "lightgreen"),

+ edge = list(color = "cyan"), graph = list(rankdir = "LR")))

a b

cd

e f

g h

i

j

Users can also set attributes per-node and per-edge. In this case, if an
attribute is defined for a particular node then that node uses the specified at-
tribute and the rest of the nodes use the global default. Note that any attribute
that is set on a per-node or per-edge basis must have a default set globally,
due to the way that Graphviz sets attributes. Both the per-node and per-edge
attributes are set in the same basic manner - the attributes are set using a list
where the names of the elements are the attributes, and each element contains
a named vector. The names of this vector correspond to either node names or
edge names, and the values of the vector are the values to set the attribute to for
that node or edge. The following sections will demonstrate how to set per-node
and per-edge attributes for commonly desired tasks. For these we will construct
two lists, nAttrs and eAttrs to pass in to plot.

> nAttrs <- list()

> eAttrs <- list()

15

Please note to take care with edge names. If recipEdges is set to combined ,
then only one of any pair of reciprocal edges will actually be used. Users should
utilize the edgeNames method to be sure that they are setting attributes for the
right edge names.

6 Labels

By default, nodes use the node name as their label and edges do not have a
label. However, both can have custom labels supplied via attributes.

> nAttrs$label <- c(a = "lab1", b = "lab2", g = "lab3", d = "lab4")

> nAttrs

$label
a b g d

"lab1" "lab2" "lab3" "lab4"

> eAttrs$label <- c("a~h" = "test", "c~h" = "test2")

> eAttrs

$label
a~h c~h

"test" "test2"

> plot(g1, nodeAttrs = nAttrs, edgeAttrs = eAttrs)

16

lab1

lab2

lab4

lab3

test

test2

6.1 Using Edge Weights For Labels

A common desire for edge weights is to use the edge weights of the edges for the
labels on a plotted graph. This can be done with just a couple of extra steps.
First we will get the edge weights, and unlist them, to provide them in vector
format. Then, first we will determine which of those to remove (this step is
only necessary if recipEdges is set to TRUE , which is default behavior for both
undirected and directed graphs) and remove those positions from our vector.
Finally, we will get the set of edge names which will be used for plotting and
bundle that into the appropriate structure for plotting.

> ew <- edgeWeights(g1)

> lw <- unlist(unlist(ew))

> toRemove <- removedEdges(g1)

> if (length(toRemove) > 0) lw <- lw[-toRemove]

> names(lw) <- edgeNames(g1)

> eAttrs$label <- lw

> plot(g1, nodeAttrs = nAttrs, edgeAttrs = eAttrs)

17

lab1

lab2

lab4

lab3

1

1

1

1

1

1

1

2

1

1

1

1

11

1

1

7 Adding Some Color

There are many areas where color can be specified to the plotted graph. Edges
can be drawn in a non-default color, as can nodes. Nodes can also have a specific
fillcolor defined, detailing what color the interior of the node should be. The
color used for the labels can also be specified with the fontcolor attribute.

> nAttrs$color <- c(a = "red", b = "red", g = "green", d = "blue")

> eAttrs$color <- c("a~d" = "blue", "c~h" = "purple")

> nAttrs$fillcolor <- c(j = "yellow")

> nAttrs$fontcolor <- c(e = "green", f = "red")

> eAttrs$fontcolor <- c("a~h" = "green", "c~h" = "brown")

> nAttrs

$label
a b g d

"lab1" "lab2" "lab3" "lab4"

$color
a b g d

"red" "red" "green" "blue"

18

$fillcolor
j

"yellow"

$fontcolor
e f

"green" "red"

> eAttrs

$label
a~b a~d a~e a~f a~h b~f b~d b~e b~h c~h d~e d~f d~h e~f e~h f~h
1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1

$color
a~d c~h

"blue" "purple"

$fontcolor
a~h c~h

"green" "brown"

> plot(g1, nodeAttrs = nAttrs, edgeAttrs = eAttrs)

lab1

lab2

lab4

lab3

1

1

1

1

1

1

1

2

1

1

1

1

11

1

1

19

8 Node Shapes

The Rgraphviz package allows you to specify different shapes for your nodes.
Currently, the only shapes allowed are circle (the default), ellipse, plaintext
and box (Note that plaintext is simply a box that is not displayed for purposes
of layout). As with previous attributes, the shape can be set globally or for
specific nodes. Here is the same graph from the previous example, with the
default shape as ellipse and with two nodes specified as being box , one as a
circle and one as a plaintext node:

> defAttrs$node$shape <- "ellipse"

> nAttrs$shape <- c(e = "box", g = "circle", j = "box", d = "plaintext")

> plot(g1, attrs = defAttrs, nodeAttrs = nAttrs)

lab1

lab2

lab4

lab3

9 Setting attributes via node and edge lists

The user can take a different direction in setting up attributes and laying out
the graph then the one presented above. The following method can be used to
replicate exactly the same sorts of behaviour described above, but can be more
flexible in some other cases. The functions buildNodeList and buildEdgeList
will generate a list of pNode and pEdge objects respectively. These are used
to provide the information for the actual Graphviz layout (and by default are

20

generated automatically). By generating these manually before the layout, one
can edit these objects and perform the layout with these edited lists.

For example:

> nodes <- buildNodeList(g1)

> edges <- buildEdgeList(g1)

> nodes[[1]]

An object of class "pNode"
Slot "name":
[1] "a"

Slot "attrs":
$label
[1] "a"

Slot "subG":
[1] 0

> edges[[1]]

An object of class "pEdge"
Slot "from":
[1] "a"

Slot "to":
[1] "b"

Slot "attrs":
$arrowhead
[1] "none"

$weight
[1] "1"

Slot "subG":
[1] 0

You can now see the contents of the first pNode and first pEdge objects in
their respective lists. These two functions can also utilize the attribute lists
that were passed into agopen. Note that if we are using default attributes, that
for the buildNodeList and buildEdgeList functions we only want to pass in
defaults for node and edges, respectively.

> nodes <- buildNodeList(g1, nodeAttrs = nAttrs, defAttrs = defAttrs$node)

> edges <- buildEdgeList(g1, edgeAttrs = eAttrs, defAttrs = defAttrs$edge)

> nodes[[1]]

21

An object of class "pNode"
Slot "name":
[1] "a"

Slot "attrs":
$label
[1] "lab1"

$color
[1] "red"

$fillcolor
[1] "transparent"

$fontcolor
[1] "black"

$shape
[1] "ellipse"

Slot "subG":
[1] 0

> edges[[1]]

An object of class "pEdge"
Slot "from":
[1] "a"

Slot "to":
[1] "b"

Slot "attrs":
$arrowhead
[1] "none"

$weight
[1] "1"

$label
[1] "1"

$color
[1] "black"

22

$fontcolor
[1] "black"

Slot "subG":
[1] 0

Notice the difference between the objects in the second example as compared
with the first, containing the specified attributes. Now we can plot this graph,
which should look identical to the previous plot:

> vv <- agopen(name = "foo", nodes = nodes, edges = edges, edgeMode = "undirected")

> plot(vv)

lab1

lab2

lab4

lab3

1

1

1

1

1

1

1

2

1

1

1

1

11

1

1

Here we’ve added our own arrowheads to the a e and a h edges as well
as added an arrowtail to the graph - while visually indicating direction, these
will have no bearing on the layout itself as Graphviz will view these edges as
undirected. This same technique can be used in the case where a directed graph
has reciprocated edges and one wants to combine those edges into single edges
with arrows in both directions.

Next we will use a completely different graph, one of the graphs as part of the
graphExamples dataset in the graph package and provide another demonstration
of working with attributes to customize your plot.

23

> data(graphExamples)

> z <- graphExamples[[17]]

> nNodes <- length(nodes(z))

> nA <- list()

> nA$fixedSize <- rep(FALSE, nNodes)

> nA$height <- nA$width <- rep("1", nNodes)

> nA$label <- rep("foo", nNodes)

> nA$color <- rep("green", nNodes)

> nA$fillcolor <- rep("orange", nNodes)

> nA$shape <- rep("circle", nNodes)

> nA$fontcolor <- rep("blue", nNodes)

> nA$fontsize <- rep(14, nNodes)

> nA <- lapply(nA, function(x) {

+ names(x) <- nodes(z)

+ x

+ })

> plot(z, nodeAttrs = nA)

foo foo foo foo foo foo foo foo foo

24

10 Plotting with non-standard nodes

The Rgraphviz package provides for non-standard node drawing. Note that
these nodes are shaped the same as standard nodes, but are able to provide for
richer information in the actual display.

To do this, lay out the graph using the shape desired - then, when plotting
the laid out graph, one can use the drawNode argument to plot to define how
the nodes are drawn. This argument can be either of length one (in which case
all nodes are drawn with it) or a list of length equal to the number of nodes in
the graph (in which case the first element of the list is used to draw the first
node, etc). To work correctly, the function will take four arguments - the first
node is an object of class AgNode, which describes the node’s location and other
information and the second parameter, ur is of class XYPoint and describes the
upper right hand point of the bounding box (where the lower left is 0,0). The
third parameter, attrs, is a node attribute list as discussed in the ”Attributes”
section and represents post-layout attribute changes where the user wants to
override values present in the layout. The fourth argument, radConv is used by
Rgraphviz to convert Graphviz units to R plotting units. This argument will
probably not need to be specified by any custom drawing function, but does
need to exist. A custom drawing function is free to ignore these values, but the
argument must exist in the function declaration to at least accept the value being
passed in. The default function for node drawing on all nodes is drawAgNode, so
if one wants to use a custom function for some nodes but the standard function
for others, the list passed in to drawNode can have the custom functions in
the elements corresponding to those nodes desired to have special display and
drawAgNode in the elements corresponding to the nodes where standard display
is desired.

One function included with the Rgraphviz package that can be used for such
alternate node drawing is pieGlyph. This allows users to put arbitrary pie
charts in as circular nodes. As an example, we will take the eset dataset from
the Biobase package and will create a graph where each node corresponds to one
of a set of Affymetrix probes represented in that exprSet and draw each node
with a pie chart representing the expression levels of the samples in the exprSet
for that probe.

> if (require("Biobase")) {

+ data(eset)

+ exprs <- exprs(eset)[100:109,]

+ probes <- rownames(exprs)

+ set.seed(123)

+ pieGraph <- randomGraph(probes, 1:4, 0.2)

+ pgLayout <- agopen(pieGraph, "foo")

+ counts <- apply(exprs, 1, function(x) {

+ table(cut(x, breaks = c(-Inf, 100, 500, Inf)))

+ })

+ plotPieChart <- function(curPlot, counts) {

25

+ buildDrawing <- function(x) {

+ force(x)

+ y <- x * 100 + 1

+ function(node, ur, attrs = list(), radConv = 1) {

+ nodeCenter <- getNodeCenter(node)

+ pieGlyph(y, xpos = getX(nodeCenter), ypos = getY(nodeCenter),

+ radius = getNodeRW(node), col = c("blue", "green",

+ "red"))

+ }

+ }

+ drawing <- vector(mode = "list", length = length(probes))

+ for (i in 1:length(drawing)) {

+ drawing[[i]] <- buildDrawing(counts[, i])

+ }

+ plot(curPlot, drawNode = drawing, main = "Example Pie Chart Plot")

+ legend(240, 100, legend = c("No Data", "0-100", "101-500",

+ "500+"), fill = c("white", "blue", "green", "red"))

+ }

+ plotPieChart(pgLayout, counts)

+ } else {

+ cat("This example is missing since you do not have Biobase")

+ }

Example Pie Chart Plot

No Data

0−100

101−500

500+

26

To construct this plot, we constructed a complete function, although this is
not necessary - one can take any path they desire to build the list of drawing
functions. Also note that in this plot the nodes do not have labels as it would
look confusing, but those could be easily added with a line such as drawTxtLa-
bel(txtLabel(node), getX(nodeCenter), getY(nodeCenter)) in the buildDrawing
sub-function above. The drawAgNode should be used as a guide for basic activ-
ities such as this.

11 Other types of graphs

Up to this point, we have only been working with objects of class graphNEL, but
the other subclasses of graph (such as distGraph and clusterGraph) will work
as well (provided that they support the nodes method as well as have an edgeL
method defined to generate an edge list like the one for graphNEL).

In this section, we’ll demonstrate a few examples of using graphs of classes
other then graphNEL. Users should not notice a difference in the actual interface,
but this will also provide some visual examples as to how these types of graphs
will appear.

For our first set of examples, we will create an object of class clusterGraph
and then plot it using all three layout methods:

> cG <- new("clusterGraph", clusters = list(a = c(1:10), b = c(11:13),

+ c = c(14:20), d = c(21, 22)))

> cG

A graph with undirected edges
Number of Nodes = 22
Number of Edges = 70

In Figure 1 we show the same graph, cG laid out using three different algo-
rithms.

12 Laying out a bipartite graph

Here we provide a simple example of laying out a bipartite graph. There are
two types of nodes, and edges go only from one type to the other. We first
construct the bipartite graph and set various node attributes. We want to have
color for the nodes, and we want to lay the graph out from left to right, rather
than vertically.

> library("RColorBrewer")

> twocolors <- c(brewer.pal(11, "RdYlGn")[7], brewer.pal(11, "RdYlBu")[7])

> myNodes <- c("m1", "m2", "m3", "m4", "r1", "r2")

> myEdges <- list(m1 = list(edges = c("r1")), m2 = list(edges = c("r1")),

+ m3 = list(edges = c("r2")), m4 = list(edges = c("r2")), r1 = list(edges = c("m3")),

27

Dot Layout

●1

●2

●3

●4

●5

●6

●7

●8

●9

●10

●11

●12

●13

●14

●15

●16

●17

●18

●19

●20

●21

●22

Twopi Layout

1
2

345

6

7 8 9

10

11

12

13 14
15

16
17

18
19

20

2122

Neato Layout

1
2

3

4 56

7

8
9

10

11 12

13

14
15

16

17 18

19

20

21 22

Figure 1: A cluster graph laid out using the three layout algorithm.

+ r2 = list())

> g <- new("graphNEL", nodes = myNodes, edgeL = myEdges, edgemode = "directed")

> g

A graphNEL graph with directed edges
Number of Nodes = 6
Number of Edges = 5

Next we set up the node attributes and create subgraphs so that we can better
control the layout.

> nA = makeNodeAttrs(g, fillcolor = twocolors[1])

> sg1 = subGraph(c("r1", "r2"), g)

> v1 = "sink"

> names(v1) = "rank"

> sgL = list(list(graph = sg1, cluster = FALSE, attrs = v1))

> defA = list(graph = list(rankdir = "LR", rank = ""))

Finally, in Figure 2 we plot the bipartite graph.

28

m1

m2

m3

m4

r1

r2

Figure 2: A bipartite graph.

29

	Overview
	Plotting in R Using Different Layout Methods
	SubGraphs
	A Note About Edge Names

	Attributes
	The Attributes List
	Labels
	Using Edge Weights For Labels

	Adding Some Color
	Node Shapes
	Setting attributes via node and edge lists
	Plotting with non-standard nodes
	Other types of graphs
	Laying out a bipartite graph

